Two-dimensional turbulence above topography: condensation transition and selection of minimum enstrophy solutions
We consider two-dimensional flows above topography, revisiting the selective decay (or minimum enstrophy) hypothesis of Bretherton and Haidvogel. We derive a ‘condensed branch’ of solutions to the variational problem where a domain-scale condensate coexists with a flow at the (smaller) scale of the...
Gespeichert in:
| Veröffentlicht in: | Journal of fluid mechanics Jg. 988 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
31.05.2024
|
| Schlagworte: | |
| ISSN: | 0022-1120, 1469-7645 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider two-dimensional flows above topography, revisiting the selective decay (or minimum enstrophy) hypothesis of Bretherton and Haidvogel. We derive a ‘condensed branch’ of solutions to the variational problem where a domain-scale condensate coexists with a flow at the (smaller) scale of the topography. The condensate arises through a supercritical bifurcation as the conserved energy of the initial condition exceeds a threshold value, a prediction that we quantitatively validate using direct numerical simulations. We then consider the forced–dissipative case, showing how weak forcing and dissipation select a single dissipative state out of the continuum of solutions to the energy-conserving system predicted by selective decay. As the forcing strength increases, the condensate arises through a supercritical bifurcation for topographic-scale forcing and through a subcritical bifurcation for domain-scale forcing, both predictions being quantitatively validated by direct numerical simulations. This method provides a way of determining the equilibrated state of forced–dissipative flows based on variational approaches to the associated energy-conserving system, such as the statistical mechanics of two-dimensional flows or selective decay. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-1120 1469-7645 |
| DOI: | 10.1017/jfm.2024.365 |