A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively

•A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with weights updated adaptively is proposed.•The proposed algorithm is applied to solve various multiobjective optimization problems. Recently, decompo...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 572; pp. 343 - 377
Main Authors: Liu, Yuan, Hu, Yikun, Zhu, Ningbo, Li, Kenli, Zou, Juan, Li, Miqing
Format: Journal Article
Language:English
Published: Elsevier Inc 01.09.2021
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with weights updated adaptively is proposed.•The proposed algorithm is applied to solve various multiobjective optimization problems. Recently, decomposition-based multiobjective evolutionary algorithms (DMEAs) have become more prevalent than other patterns (e.g., Pareto-based algorithms and indicator-based algorithms) for solving multiobjective optimization problems (MOPs). They utilize a scalarizing method to decompose an MOP into several subproblems based on the weights provided, resulting in the performances of the algorithms being highly dependent on the uniformity between the problem’s optimal Pareto front and the distribution of the specified weights. However, weight generation is generally based on a simplex lattice design, which is suitable for “regular” Pareto fronts (i.e., simplex-like fronts) but not for other “irregular” Pareto fronts. To improve the efficiency of this type of algorithm, we develop a DMEA with weights updated adaptively (named DMEA-WUA) for the problems regarding various Pareto fronts. Specifically,the DMEA-WUA introduces a novel exploration versus exploitation model for environmental selection.The exploration process finds appropriate weights for a given problem in four steps: weight generation, weight deletion, weight addition and weight replacement. Exploitation means using these weights from the exploration step to guide the evolution of the population. Moreover, exploration is carried out when the exploitation process is stagnant; this is different from the existing method of periodically updating weights. Experimental results show that our algorithm is suitable for solving problems with various Pareto fronts, including those with “regular” and “irregular” shapes.
AbstractList •A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with weights updated adaptively is proposed.•The proposed algorithm is applied to solve various multiobjective optimization problems. Recently, decomposition-based multiobjective evolutionary algorithms (DMEAs) have become more prevalent than other patterns (e.g., Pareto-based algorithms and indicator-based algorithms) for solving multiobjective optimization problems (MOPs). They utilize a scalarizing method to decompose an MOP into several subproblems based on the weights provided, resulting in the performances of the algorithms being highly dependent on the uniformity between the problem’s optimal Pareto front and the distribution of the specified weights. However, weight generation is generally based on a simplex lattice design, which is suitable for “regular” Pareto fronts (i.e., simplex-like fronts) but not for other “irregular” Pareto fronts. To improve the efficiency of this type of algorithm, we develop a DMEA with weights updated adaptively (named DMEA-WUA) for the problems regarding various Pareto fronts. Specifically,the DMEA-WUA introduces a novel exploration versus exploitation model for environmental selection.The exploration process finds appropriate weights for a given problem in four steps: weight generation, weight deletion, weight addition and weight replacement. Exploitation means using these weights from the exploration step to guide the evolution of the population. Moreover, exploration is carried out when the exploitation process is stagnant; this is different from the existing method of periodically updating weights. Experimental results show that our algorithm is suitable for solving problems with various Pareto fronts, including those with “regular” and “irregular” shapes.
Author Liu, Yuan
Li, Kenli
Zou, Juan
Li, Miqing
Hu, Yikun
Zhu, Ningbo
Author_xml – sequence: 1
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
  email: liu3yuan@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China
– sequence: 2
  givenname: Yikun
  surname: Hu
  fullname: Hu, Yikun
  email: yikunhu@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China
– sequence: 3
  givenname: Ningbo
  surname: Zhu
  fullname: Zhu, Ningbo
  email: quietwave@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China
– sequence: 4
  givenname: Kenli
  surname: Li
  fullname: Li, Kenli
  email: lkl@hnu.edu.cn
  organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China
– sequence: 5
  givenname: Juan
  surname: Zou
  fullname: Zou, Juan
  email: zoujuan@xtu.edu.cn
  organization: School of Computer Science, Xiangtan University, Hunan, China
– sequence: 6
  givenname: Miqing
  surname: Li
  fullname: Li, Miqing
  email: m.li.8@bham.ac.uk
  organization: CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
BookMark eNp9kMtqwzAQRUVJoUnaD-jOP2B3JMWyQ1ch9AWBbtpVF0IvJzK2FSQlIX9fmXTVRTYzDMMZ5p4ZmgxuMAg9YigwYPbUFnYIBQGCC6AFsOoGTXFdkZyRJZ6gKQCBHEhZ3qFZCC0ALCrGpuhnlWmjXL93wUbrhlyKYHTWH7o0ydaoaI8mM0fXHca18OdMdFvnbdz12SnV7GTsdhdDdthrERMqtNiPUHe-R7eN6IJ5-Otz9P368rV-zzefbx_r1SZXdAExrxkDQkpNhSJKqqpZgpZLaBimopGmYSCp1rqupa6MVKI2zUJoWQKTAijTdI6qy13lXQjeNFzZKMZ3oxe24xj46Ii3PDnioyMOlCdHicT_yL23fQp5lXm-MCZFOlrjeVDWDMpo65Murp29Qv8CfoCFyg
CitedBy_id crossref_primary_10_1007_s12065_023_00832_4
crossref_primary_10_1016_j_swevo_2022_101041
crossref_primary_10_1109_ACCESS_2024_3398415
crossref_primary_10_1007_s11227_023_05118_1
crossref_primary_10_1016_j_eswa_2024_123703
crossref_primary_10_1016_j_ins_2022_07_187
crossref_primary_10_1109_TCYB_2023_3341982
crossref_primary_10_1016_j_apenergy_2024_124853
crossref_primary_10_1016_j_ins_2022_10_077
crossref_primary_10_1016_j_engappai_2025_110056
crossref_primary_10_1016_j_rineng_2025_104372
crossref_primary_10_1016_j_ins_2022_09_057
crossref_primary_10_1016_j_swevo_2023_101317
crossref_primary_10_1016_j_asoc_2024_112516
crossref_primary_10_1016_j_ins_2024_121364
crossref_primary_10_1007_s12293_023_00401_3
crossref_primary_10_1016_j_ins_2022_06_056
crossref_primary_10_1016_j_swevo_2022_101166
crossref_primary_10_1016_j_swevo_2024_101566
crossref_primary_10_1016_j_ins_2022_05_005
crossref_primary_10_1007_s00521_023_08633_7
crossref_primary_10_1016_j_swevo_2024_101641
crossref_primary_10_3390_su15032622
crossref_primary_10_1007_s13042_024_02297_y
Cites_doi 10.1109/TCYB.2015.2501726
10.1109/TEVC.2017.2725902
10.1007/s40747-017-0039-7
10.1109/TEVC.2016.2587808
10.1109/TEVC.2016.2592479
10.1109/TEVC.2018.2865590
10.1016/j.ins.2020.03.104
10.1080/01621459.1993.10476408
10.1109/TCYB.2017.2737554
10.1162/evco_a_00269
10.1109/TEVC.2017.2695579
10.1145/2480741.2480752
10.1016/j.ins.2020.12.025
10.1016/j.ins.2018.12.078
10.1109/SMC.2017.8122921
10.1109/TEVC.2017.2749619
10.1109/TCYB.2015.2403849
10.1016/j.ejor.2008.07.025
10.1109/TEVC.2007.892759
10.1109/TCYB.2017.2737519
10.1145/3205455.3205648
10.1016/j.ins.2020.05.082
10.1109/TEVC.2020.2978158
10.1145/2739480.2754687
10.1007/BF01530777
10.1016/j.asoc.2016.11.009
10.1109/TCYB.2018.2883914
10.1080/00207729608929211
10.1109/TEVC.2016.2519378
10.1109/TEVC.2013.2281535
10.1016/j.swevo.2011.02.002
10.1109/TEVC.2005.861417
10.1109/TEVC.2016.2521175
10.1016/j.ins.2017.07.015
10.1109/TEVC.2018.2874465
10.1007/1-84628-137-7_6
10.1109/ICNC.2011.6022367
10.1109/TEVC.2018.2865931
10.1016/j.ins.2021.01.015
10.1109/MCI.2017.2742868
10.1109/TEVC.2013.2281534
10.1016/j.ins.2019.11.047
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.03.067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 377
ExternalDocumentID 10_1016_j_ins_2021_03_067
S0020025521003182
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-8660225d3ac2cbc7f90db90f613afbef60b3ddd88bd7ebca8ef4adb506ba036d3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683568800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:59:14 EST 2025
Tue Nov 18 21:14:49 EST 2025
Fri Feb 23 02:43:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multiobjective optimization problems
Exploration
Weights updated adaptively
The decomposition-based multiobjective evolutionary algorithm
Exploitation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-8660225d3ac2cbc7f90db90f613afbef60b3ddd88bd7ebca8ef4adb506ba036d3
OpenAccessLink https://birmingham.elsevierpure.com/en/publications/53ac4c63-bd6e-4a97-b71c-4c0492f00cc2
PageCount 35
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_03_067
crossref_primary_10_1016_j_ins_2021_03_067
elsevier_sciencedirect_doi_10_1016_j_ins_2021_03_067
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ge, Zhao, Sun, Wang, Tan, Zhang, Chen (b0135) 2018; 23
Vlennet, Fonteix, Marc (b0215) 1996; 27
Jain, Deb (b0085) 2014; 18
Liu, Chen, Zhang, Deb (b0150) 2018; 22
Liu, Jin, Heiderich, Rodemann (b0225) 2019; 2019
L.R.C. de Farias, P.H.M. Braga, H.F. Bassani, A.F.R. Araújo, MOEA/D with uniformly randomly adaptive weights, in: Proceedings of the Genetic and Evolutionary Computation Conference, Association for Computing Machinery, New York, NY, USA, 2018, pp. 641–648. doi:10.1145/3205455.3205648.
Behmanesh, Rahimi, Gandomi (b0065) 2020
Liu, Ishibuchi, Masuyama, Nojima (b0125) 2020; 24
M. Li, S. Yang, X. Liu, A performance comparison indicator for pareto front approximations in many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 2015, pp. 703–710. doi:10.1145/2739480.2754687.
Derrac, García, Molina, Herrera (b0245) 2011; 1
M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a survey, ACM Comput. Surveys 45 (3) (2013) 35:1–35:33. doi:10.1145/2480741.2480752.
Huband, Hingston, Barone, While (b0210) 2006; 10
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multiobjective optimization, in: Evolutionary Multiobjective Optimization, Springer, 2005, pp. 105–145. doi:10.1007/1-84628-137-7_6.
Tan, Chiam, Mamun, Goh (b0175) 2009; 197
Wang, Zhang, Zhou, Gong, Jiao (b0080) 2016; 46
Zhang, Wang, Li, Hu, Li, Wu (b0045) 2021; 563
Vafaee, Turán, Nelson, Berger-Wolf (b0170) 2014; 2014
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b0205) 2017; 3
A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, S. Nahavandi, Openga, a c++ genetic algorithm library, in: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 2051–2056. doi:10.1109/SMC.2017.8122921.
L. Zhen, M. Li, R. Cheng, D. Peng, X. Yao, Multiobjective test problems with degenerate pareto fronts, arXiv preprint arXiv:1806.02706.
Rousseeuw, Croux (b0195) 1993; 88
Xiang, Zhou, Li, Chen (b0140) 2017; 21
Zhang, Li (b0020) 2007; 11
Cheng, Jin, Olhofer, Sendhoff (b0155) 2016; 20
He, Zhou, Chen, Zhang (b0145) 2019; 23
J. Siwei, C. Zhihua, Z. Jie, O. Yew-Soon, Multiobjective optimization by decomposition with pareto-adaptive weight vectors, in: 2011 Seventh International Conference on Natural Computation, vol. 3, 2011, pp. 1260–1264. doi:10.1109/ICNC.2011.6022367.
Asafuddoula, Singh, Ray (b0110) 2018; 48
C. Segura, C.A. Coello Coello, E. Segredo, A.H. Aguirre, A novel diversity-based replacement strategy for evolutionary algorithms, IEEE Trans. Cybern. 46 (12) (2016) 3233–3246. doi:10.1109/TCYB.2015.2501726.
Eftimov, Korošec, Seljak (b0250) 2017; 417
Luo, Huang, Yang, Li, Wang, Feng (b0015) 2020; 514
Gu, Chen, Chen, Li, Xiong (b0035) 2021; 554
De Jong, Spears (b0185) 1992; 5
Jiang, Yang (b0200) 2017; 21
Li, Yao (b0060) 2020; 28
Gu, Cheung (b0100) 2018; 22
Ishibuchi, Masuda, Tanigaki, Nojima (b0030) 2015
Wang, Zhang, Zhang (b0230) 2016; 20
Ma, Yu, Li, Qi, Zhu (b0120) 2020; 24
Cai, Mei, Fan (b0160) 2018; 48
Tian, Cheng, Zhang, Cheng, Jin (b0040) 2018; 22
Liu, Gong, Sun, Zhang (b0235) 2017; 50
Xiang Wang, Shun Li, Zhen Tao, Hui Gu (b0075) 2020; 539
Wu, Li, Kwong, Zhang, Zhang (b0090) 2019; 23
Liu, Yu, Lin, Tan (b0025) 2020; 537
Derbel, Liefooghe, Zhang, Aguirre, Tanaka (b0070) 2016
Tian, Cheng, Zhang, Jin (b0240) 2017; 12
Li, Sun, Zhang, Shui (b0050) 2019
Liu, Zhu, Li, Li, Zheng, Li (b0010) 2020; 509
Tian, Zhang, Cheng, He, Jin (b0130) 2020; 50
Deb, Jain (b0055) 2014; 18
Jain (10.1016/j.ins.2021.03.067_b0085) 2014; 18
10.1016/j.ins.2021.03.067_b0115
Li (10.1016/j.ins.2021.03.067_b0060) 2020; 28
Derrac (10.1016/j.ins.2021.03.067_b0245) 2011; 1
Liu (10.1016/j.ins.2021.03.067_b0150) 2018; 22
Liu (10.1016/j.ins.2021.03.067_b0010) 2020; 509
10.1016/j.ins.2021.03.067_b0190
Vafaee (10.1016/j.ins.2021.03.067_b0170) 2014; 2014
Ishibuchi (10.1016/j.ins.2021.03.067_b0030) 2015
Tan (10.1016/j.ins.2021.03.067_b0175) 2009; 197
Ma (10.1016/j.ins.2021.03.067_b0120) 2020; 24
Rousseeuw (10.1016/j.ins.2021.03.067_b0195) 1993; 88
10.1016/j.ins.2021.03.067_b0105
Liu (10.1016/j.ins.2021.03.067_b0125) 2020; 24
Gu (10.1016/j.ins.2021.03.067_b0035) 2021; 554
Tian (10.1016/j.ins.2021.03.067_b0040) 2018; 22
Wang (10.1016/j.ins.2021.03.067_b0230) 2016; 20
10.1016/j.ins.2021.03.067_b0220
Luo (10.1016/j.ins.2021.03.067_b0015) 2020; 514
Wu (10.1016/j.ins.2021.03.067_b0090) 2019; 23
Huband (10.1016/j.ins.2021.03.067_b0210) 2006; 10
10.1016/j.ins.2021.03.067_b0180
Cheng (10.1016/j.ins.2021.03.067_b0155) 2016; 20
Wang (10.1016/j.ins.2021.03.067_b0080) 2016; 46
Jiang (10.1016/j.ins.2021.03.067_b0200) 2017; 21
Derbel (10.1016/j.ins.2021.03.067_b0070) 2016
Eftimov (10.1016/j.ins.2021.03.067_b0250) 2017; 417
Zhang (10.1016/j.ins.2021.03.067_b0020) 2007; 11
Xiang (10.1016/j.ins.2021.03.067_b0140) 2017; 21
Liu (10.1016/j.ins.2021.03.067_b0025) 2020; 537
Behmanesh (10.1016/j.ins.2021.03.067_b0065) 2020
10.1016/j.ins.2021.03.067_b0095
Tian (10.1016/j.ins.2021.03.067_b0240) 2017; 12
Ge (10.1016/j.ins.2021.03.067_b0135) 2018; 23
He (10.1016/j.ins.2021.03.067_b0145) 2019; 23
Li (10.1016/j.ins.2021.03.067_b0050) 2019
Liu (10.1016/j.ins.2021.03.067_b0235) 2017; 50
Asafuddoula (10.1016/j.ins.2021.03.067_b0110) 2018; 48
Xiang Wang (10.1016/j.ins.2021.03.067_b0075) 2020; 539
10.1016/j.ins.2021.03.067_b0005
Tian (10.1016/j.ins.2021.03.067_b0130) 2020; 50
10.1016/j.ins.2021.03.067_b0165
De Jong (10.1016/j.ins.2021.03.067_b0185) 1992; 5
Deb (10.1016/j.ins.2021.03.067_b0055) 2014; 18
Cai (10.1016/j.ins.2021.03.067_b0160) 2018; 48
Gu (10.1016/j.ins.2021.03.067_b0100) 2018; 22
Cheng (10.1016/j.ins.2021.03.067_b0205) 2017; 3
Zhang (10.1016/j.ins.2021.03.067_b0045) 2021; 563
Liu (10.1016/j.ins.2021.03.067_b0225) 2019; 2019
Vlennet (10.1016/j.ins.2021.03.067_b0215) 1996; 27
References_xml – start-page: 1
  year: 2020
  end-page: 16
  ident: b0065
  article-title: Evolutionary many-objective algorithms for combinatorial optimization problems: a comparative study
  publication-title: Arch. Comput. Methods Eng.
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: b0085
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 439
  year: 2020
  end-page: 453
  ident: b0125
  article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b0240
  article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0055
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 417
  start-page: 186
  year: 2017
  end-page: 215
  ident: b0250
  article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics
  publication-title: Inf. Sci.
– volume: 563
  start-page: 70
  year: 2021
  end-page: 90
  ident: b0045
  article-title: Many-objective evolutionary algorithm with adaptive reference vector
  publication-title: Inf. Sci.
– volume: 2014
  start-page: 2570
  year: 2014
  end-page: 2577
  ident: b0170
  article-title: Balancing the exploration and exploitation in an adaptive diversity guided genetic algorithm
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– reference: M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a survey, ACM Comput. Surveys 45 (3) (2013) 35:1–35:33. doi:10.1145/2480741.2480752.
– volume: 23
  start-page: 361
  year: 2019
  end-page: 375
  ident: b0145
  article-title: Evolutionary many-objective optimization based on dynamical decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 509
  start-page: 376
  year: 2020
  end-page: 399
  ident: b0010
  article-title: An angle dominance criterion for evolutionary many-objective optimization
  publication-title: Inf. Sci.
– reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multiobjective optimization, in: Evolutionary Multiobjective Optimization, Springer, 2005, pp. 105–145. doi:10.1007/1-84628-137-7_6.
– volume: 46
  start-page: 474
  year: 2016
  end-page: 486
  ident: b0080
  article-title: Adaptive replacement strategies for MOEA/D
  publication-title: IEEE Trans. Cybern.
– volume: 2019
  start-page: 1726
  year: 2019
  end-page: 1733
  ident: b0225
  article-title: Adaptation of reference vectors for evolutionary many-objective optimization of problems with irregular pareto fronts
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 539
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0075
  article-title: An improved moea/d algorithm with an adaptive evolutionary strategy
  publication-title: Inf. Sci.
– volume: 20
  start-page: 821
  year: 2016
  end-page: 837
  ident: b0230
  article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
– reference: J. Siwei, C. Zhihua, Z. Jie, O. Yew-Soon, Multiobjective optimization by decomposition with pareto-adaptive weight vectors, in: 2011 Seventh International Conference on Natural Computation, vol. 3, 2011, pp. 1260–1264. doi:10.1109/ICNC.2011.6022367.
– volume: 48
  start-page: 2335
  year: 2018
  end-page: 2348
  ident: b0160
  article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors
  publication-title: IEEE Trans. Cybern.
– reference: A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, S. Nahavandi, Openga, a c++ genetic algorithm library, in: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 2051–2056. doi:10.1109/SMC.2017.8122921.
– volume: 28
  start-page: 227
  year: 2020
  end-page: 253
  ident: b0060
  article-title: What weights work for you? Adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evol. Comput.
– reference: L.R.C. de Farias, P.H.M. Braga, H.F. Bassani, A.F.R. Araújo, MOEA/D with uniformly randomly adaptive weights, in: Proceedings of the Genetic and Evolutionary Computation Conference, Association for Computing Machinery, New York, NY, USA, 2018, pp. 641–648. doi:10.1145/3205455.3205648.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b0155
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 329
  year: 2017
  end-page: 346
  ident: b0200
  article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 88
  start-page: 1273
  year: 1993
  end-page: 1283
  ident: b0195
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
– volume: 50
  start-page: 344
  year: 2017
  end-page: 355
  ident: b0235
  article-title: Many-objective evolutionary optimization based on reference points
  publication-title: Appl. Soft Comput.
– volume: 5
  start-page: 1
  year: 1992
  end-page: 26
  ident: b0185
  article-title: A formal analysis of the role of multi-point crossover in genetic algorithms
  publication-title: Ann. Math. Artif. Intell.
– reference: M. Li, S. Yang, X. Liu, A performance comparison indicator for pareto front approximations in many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 2015, pp. 703–710. doi:10.1145/2739480.2754687.
– reference: C. Segura, C.A. Coello Coello, E. Segredo, A.H. Aguirre, A novel diversity-based replacement strategy for evolutionary algorithms, IEEE Trans. Cybern. 46 (12) (2016) 3233–3246. doi:10.1109/TCYB.2015.2501726.
– start-page: 91
  year: 2019
  end-page: 100
  ident: b0050
  article-title: Adjustment of weight vectors of penalty-based boundary intersection method in MOEA/D
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 514
  start-page: 166
  year: 2020
  end-page: 202
  ident: b0015
  article-title: A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization
  publication-title: Inf. Sci.
– volume: 48
  start-page: 2321
  year: 2018
  end-page: 2334
  ident: b0110
  article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors
  publication-title: IEEE Trans. Cybern.
– volume: 22
  start-page: 211
  year: 2018
  end-page: 225
  ident: b0100
  article-title: Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 110
  year: 2015
  end-page: 125
  ident: b0030
  article-title: Modified distance calculation in generational distance and inverted generational distance
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 22
  start-page: 609
  year: 2018
  end-page: 622
  ident: b0040
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
– volume: 197
  start-page: 701
  year: 2009
  end-page: 713
  ident: b0175
  article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization
  publication-title: Eur. J. Oper. Res.
– volume: 24
  start-page: 634
  year: 2020
  end-page: 649
  ident: b0120
  article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 131
  year: 2017
  end-page: 152
  ident: b0140
  article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0020
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 537
  start-page: 261
  year: 2020
  end-page: 283
  ident: b0025
  article-title: An adaptive clustering-based evolutionary algorithm for many-objective optimization problems
  publication-title: Inf. Sci.
– volume: 50
  start-page: 1106
  year: 2020
  end-page: 1119
  ident: b0130
  article-title: Guiding evolutionary multiobjective optimization with generic front modeling
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b0210
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 255
  year: 1996
  end-page: 260
  ident: b0215
  article-title: Multicriteria optimization using a genetic algorithm for determining a Pareto set
  publication-title: Int. J. Syst. Sci.
– reference: L. Zhen, M. Li, R. Cheng, D. Peng, X. Yao, Multiobjective test problems with degenerate pareto fronts, arXiv preprint arXiv:1806.02706.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0245
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 554
  start-page: 236
  year: 2021
  end-page: 255
  ident: b0035
  article-title: A many-objective evolutionary algorithm with reference points-based strengthened dominance relation
  publication-title: Inf. Sci.
– volume: 23
  start-page: 376
  year: 2019
  end-page: 390
  ident: b0090
  article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 67
  year: 2017
  end-page: 81
  ident: b0205
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex Intell. Syst.
– volume: 22
  start-page: 433
  year: 2018
  end-page: 448
  ident: b0150
  article-title: Adaptively allocating search effort in challenging many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 431
  year: 2016
  end-page: 441
  ident: b0070
  article-title: Multi-objective local search based on decomposition
  publication-title: Parallel Problem Solving from Nature – PPSN XIV
– volume: 23
  start-page: 572
  year: 2018
  end-page: 586
  ident: b0135
  article-title: A many-objective evolutionary algorithm with two interacting processes: cascade clustering and reference point incremental learning
  publication-title: IEEE Trans. Evol. Comput.
– volume: 2019
  start-page: 1726
  year: 2019
  ident: 10.1016/j.ins.2021.03.067_b0225
  article-title: Adaptation of reference vectors for evolutionary many-objective optimization of problems with irregular pareto fronts
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– ident: 10.1016/j.ins.2021.03.067_b0180
  doi: 10.1109/TCYB.2015.2501726
– volume: 22
  start-page: 433
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2021.03.067_b0150
  article-title: Adaptively allocating search effort in challenging many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2725902
– volume: 3
  start-page: 67
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2021.03.067_b0205
  article-title: A benchmark test suite for evolutionary many-objective optimization
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-017-0039-7
– start-page: 91
  year: 2019
  ident: 10.1016/j.ins.2021.03.067_b0050
  article-title: Adjustment of weight vectors of penalty-based boundary intersection method in MOEA/D
– start-page: 110
  year: 2015
  ident: 10.1016/j.ins.2021.03.067_b0030
  article-title: Modified distance calculation in generational distance and inverted generational distance
– volume: 21
  start-page: 131
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2021.03.067_b0140
  article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587808
– volume: 21
  start-page: 329
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2021.03.067_b0200
  article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2592479
– volume: 23
  start-page: 361
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2021.03.067_b0145
  article-title: Evolutionary many-objective optimization based on dynamical decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2865590
– volume: 537
  start-page: 261
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0025
  article-title: An adaptive clustering-based evolutionary algorithm for many-objective optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.03.104
– volume: 88
  start-page: 1273
  issue: 424
  year: 1993
  ident: 10.1016/j.ins.2021.03.067_b0195
  article-title: Alternatives to the median absolute deviation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476408
– volume: 48
  start-page: 2335
  issue: 8
  year: 2018
  ident: 10.1016/j.ins.2021.03.067_b0160
  article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2737554
– volume: 28
  start-page: 227
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0060
  article-title: What weights work for you? Adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00269
– volume: 22
  start-page: 211
  issue: 2
  year: 2018
  ident: 10.1016/j.ins.2021.03.067_b0100
  article-title: Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2695579
– ident: 10.1016/j.ins.2021.03.067_b0190
  doi: 10.1145/2480741.2480752
– volume: 554
  start-page: 236
  year: 2021
  ident: 10.1016/j.ins.2021.03.067_b0035
  article-title: A many-objective evolutionary algorithm with reference points-based strengthened dominance relation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.12.025
– volume: 509
  start-page: 376
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0010
  article-title: An angle dominance criterion for evolutionary many-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.078
– ident: 10.1016/j.ins.2021.03.067_b0005
  doi: 10.1109/SMC.2017.8122921
– volume: 22
  start-page: 609
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2021.03.067_b0040
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2749619
– volume: 46
  start-page: 474
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2021.03.067_b0080
  article-title: Adaptive replacement strategies for MOEA/D
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2403849
– volume: 197
  start-page: 701
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2021.03.067_b0175
  article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2008.07.025
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2021.03.067_b0020
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 48
  start-page: 2321
  issue: 8
  year: 2018
  ident: 10.1016/j.ins.2021.03.067_b0110
  article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2737519
– ident: 10.1016/j.ins.2021.03.067_b0165
  doi: 10.1145/3205455.3205648
– volume: 539
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0075
  article-title: An improved moea/d algorithm with an adaptive evolutionary strategy
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.082
– volume: 24
  start-page: 634
  issue: 4
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0120
  article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2978158
– ident: 10.1016/j.ins.2021.03.067_b0105
  doi: 10.1145/2739480.2754687
– volume: 5
  start-page: 1
  issue: 1
  year: 1992
  ident: 10.1016/j.ins.2021.03.067_b0185
  article-title: A formal analysis of the role of multi-point crossover in genetic algorithms
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/BF01530777
– volume: 50
  start-page: 344
  year: 2017
  ident: 10.1016/j.ins.2021.03.067_b0235
  article-title: Many-objective evolutionary optimization based on reference points
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.009
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0065
  article-title: Evolutionary many-objective algorithms for combinatorial optimization problems: a comparative study
  publication-title: Arch. Comput. Methods Eng.
– volume: 50
  start-page: 1106
  issue: 3
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0130
  article-title: Guiding evolutionary multiobjective optimization with generic front modeling
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2883914
– volume: 27
  start-page: 255
  issue: 2
  year: 1996
  ident: 10.1016/j.ins.2021.03.067_b0215
  article-title: Multicriteria optimization using a genetic algorithm for determining a Pareto set
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207729608929211
– ident: 10.1016/j.ins.2021.03.067_b0220
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.ins.2021.03.067_b0155
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2021.03.067_b0055
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2021.03.067_b0245
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.ins.2021.03.067_b0210
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 20
  start-page: 821
  issue: 6
  year: 2016
  ident: 10.1016/j.ins.2021.03.067_b0230
  article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2521175
– volume: 417
  start-page: 186
  year: 2017
  ident: 10.1016/j.ins.2021.03.067_b0250
  article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.015
– volume: 23
  start-page: 572
  issue: 4
  year: 2018
  ident: 10.1016/j.ins.2021.03.067_b0135
  article-title: A many-objective evolutionary algorithm with two interacting processes: cascade clustering and reference point incremental learning
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2874465
– ident: 10.1016/j.ins.2021.03.067_b0115
  doi: 10.1007/1-84628-137-7_6
– ident: 10.1016/j.ins.2021.03.067_b0095
  doi: 10.1109/ICNC.2011.6022367
– volume: 23
  start-page: 376
  issue: 3
  year: 2019
  ident: 10.1016/j.ins.2021.03.067_b0090
  article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2865931
– volume: 563
  start-page: 70
  year: 2021
  ident: 10.1016/j.ins.2021.03.067_b0045
  article-title: Many-objective evolutionary algorithm with adaptive reference vector
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.015
– volume: 2014
  start-page: 2570
  year: 2014
  ident: 10.1016/j.ins.2021.03.067_b0170
  article-title: Balancing the exploration and exploitation in an adaptive diversity guided genetic algorithm
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2021.03.067_b0240
  article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 24
  start-page: 439
  issue: 3
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0125
  article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2021.03.067_b0085
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 514
  start-page: 166
  year: 2020
  ident: 10.1016/j.ins.2021.03.067_b0015
  article-title: A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.11.047
– start-page: 431
  year: 2016
  ident: 10.1016/j.ins.2021.03.067_b0070
  article-title: Multi-objective local search based on decomposition
SSID ssj0004766
Score 2.5039282
Snippet •A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 343
SubjectTerms Exploitation
Exploration
Multiobjective optimization problems
The decomposition-based multiobjective evolutionary algorithm
Weights updated adaptively
Title A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively
URI https://dx.doi.org/10.1016/j.ins.2021.03.067
Volume 572
WOSCitedRecordID wos000683568800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB7BlgMcEBQQLRT5gDiwsuTEeTjHFSoqqKo4FLSCQ-RX2ixLdrW7afvzsWPnsaVF9MAliqyM42Q-j8fjeQC8lXGmgkhxrHVEcSR4gm1eNBxIXSjBChU3UfzfjtOTEzadZl_8iem6KSeQVhW7usqW_5XVps0w24bO3oHdXaemwdwbppurYbu5_hPjJ2OlraO498bCdp1SznFwIWZOvo31hR-DdZrj87PFqtyc_3JW2cvGWroe10trDVBjrvjSEs23ToB9HFMDH7-Mdur5cVk3or3uoXfkWsqfddf0_bx2WKzOxKIn9dFC83JokAiDzuOqDxAg2G5VhkI2dgV6vJikLjWTX3GpK-TyhzB3doWZ2YHYvOph0GSjdcU7thNnX1vQOjfD1oNtlpsucttFTmhuurgPO2EaZ2wEO5NPh9PPfSRt6k63209oz8Ebj8Br47hZkxloJ6dP4LHfVqCJg8NTuKerXXg0SDa5Cwc-RAW9QwPeIS_cn8GPCboBOGgbOGgIHNQBB1ngIA8c5IGDeuA8h68fD08_HGFfegNLGpENZklilLtYUS5DKWRaZESJjBRG-eOF0EVCBFVKMSZUat3pmC4iroSZ5YIbnUjRFzCqFpV-CYhxTZNMCyJlFgWEs0CziMeGIlRxEdI9IO1vzKXPS2_Lo8zzW9m3B-87kqVLyvK3h6OWN7mfDk5bzA3Obifbv8s7XsHDfia8htFmVesDeCAvNuV69caD7Deod54l
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition-based+multiobjective+evolutionary+algorithm+with+weights+updated+adaptively&rft.jtitle=Information+sciences&rft.au=Liu%2C+Yuan&rft.au=Hu%2C+Yikun&rft.au=Zhu%2C+Ningbo&rft.au=Li%2C+Kenli&rft.date=2021-09-01&rft.issn=0020-0255&rft.volume=572&rft.spage=343&rft.epage=377&rft_id=info:doi/10.1016%2Fj.ins.2021.03.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_03_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon