A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively
•A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with weights updated adaptively is proposed.•The proposed algorithm is applied to solve various multiobjective optimization problems. Recently, decompo...
Saved in:
| Published in: | Information sciences Vol. 572; pp. 343 - 377 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.09.2021
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with weights updated adaptively is proposed.•The proposed algorithm is applied to solve various multiobjective optimization problems.
Recently, decomposition-based multiobjective evolutionary algorithms (DMEAs) have become more prevalent than other patterns (e.g., Pareto-based algorithms and indicator-based algorithms) for solving multiobjective optimization problems (MOPs). They utilize a scalarizing method to decompose an MOP into several subproblems based on the weights provided, resulting in the performances of the algorithms being highly dependent on the uniformity between the problem’s optimal Pareto front and the distribution of the specified weights. However, weight generation is generally based on a simplex lattice design, which is suitable for “regular” Pareto fronts (i.e., simplex-like fronts) but not for other “irregular” Pareto fronts. To improve the efficiency of this type of algorithm, we develop a DMEA with weights updated adaptively (named DMEA-WUA) for the problems regarding various Pareto fronts. Specifically,the DMEA-WUA introduces a novel exploration versus exploitation model for environmental selection.The exploration process finds appropriate weights for a given problem in four steps: weight generation, weight deletion, weight addition and weight replacement. Exploitation means using these weights from the exploration step to guide the evolution of the population. Moreover, exploration is carried out when the exploitation process is stagnant; this is different from the existing method of periodically updating weights. Experimental results show that our algorithm is suitable for solving problems with various Pareto fronts, including those with “regular” and “irregular” shapes. |
|---|---|
| AbstractList | •A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with weights updated adaptively is proposed.•The proposed algorithm is applied to solve various multiobjective optimization problems.
Recently, decomposition-based multiobjective evolutionary algorithms (DMEAs) have become more prevalent than other patterns (e.g., Pareto-based algorithms and indicator-based algorithms) for solving multiobjective optimization problems (MOPs). They utilize a scalarizing method to decompose an MOP into several subproblems based on the weights provided, resulting in the performances of the algorithms being highly dependent on the uniformity between the problem’s optimal Pareto front and the distribution of the specified weights. However, weight generation is generally based on a simplex lattice design, which is suitable for “regular” Pareto fronts (i.e., simplex-like fronts) but not for other “irregular” Pareto fronts. To improve the efficiency of this type of algorithm, we develop a DMEA with weights updated adaptively (named DMEA-WUA) for the problems regarding various Pareto fronts. Specifically,the DMEA-WUA introduces a novel exploration versus exploitation model for environmental selection.The exploration process finds appropriate weights for a given problem in four steps: weight generation, weight deletion, weight addition and weight replacement. Exploitation means using these weights from the exploration step to guide the evolution of the population. Moreover, exploration is carried out when the exploitation process is stagnant; this is different from the existing method of periodically updating weights. Experimental results show that our algorithm is suitable for solving problems with various Pareto fronts, including those with “regular” and “irregular” shapes. |
| Author | Liu, Yuan Li, Kenli Zou, Juan Li, Miqing Hu, Yikun Zhu, Ningbo |
| Author_xml | – sequence: 1 givenname: Yuan surname: Liu fullname: Liu, Yuan email: liu3yuan@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China – sequence: 2 givenname: Yikun surname: Hu fullname: Hu, Yikun email: yikunhu@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China – sequence: 3 givenname: Ningbo surname: Zhu fullname: Zhu, Ningbo email: quietwave@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China – sequence: 4 givenname: Kenli surname: Li fullname: Li, Kenli email: lkl@hnu.edu.cn organization: College of Computer Science and Electronic Engineering, Hunan University, Hunan, China – sequence: 5 givenname: Juan surname: Zou fullname: Zou, Juan email: zoujuan@xtu.edu.cn organization: School of Computer Science, Xiangtan University, Hunan, China – sequence: 6 givenname: Miqing surname: Li fullname: Li, Miqing email: m.li.8@bham.ac.uk organization: CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK |
| BookMark | eNp9kMtqwzAQRUVJoUnaD-jOP2B3JMWyQ1ch9AWBbtpVF0IvJzK2FSQlIX9fmXTVRTYzDMMZ5p4ZmgxuMAg9YigwYPbUFnYIBQGCC6AFsOoGTXFdkZyRJZ6gKQCBHEhZ3qFZCC0ALCrGpuhnlWmjXL93wUbrhlyKYHTWH7o0ydaoaI8mM0fXHca18OdMdFvnbdz12SnV7GTsdhdDdthrERMqtNiPUHe-R7eN6IJ5-Otz9P368rV-zzefbx_r1SZXdAExrxkDQkpNhSJKqqpZgpZLaBimopGmYSCp1rqupa6MVKI2zUJoWQKTAijTdI6qy13lXQjeNFzZKMZ3oxe24xj46Ii3PDnioyMOlCdHicT_yL23fQp5lXm-MCZFOlrjeVDWDMpo65Murp29Qv8CfoCFyg |
| CitedBy_id | crossref_primary_10_1007_s12065_023_00832_4 crossref_primary_10_1016_j_swevo_2022_101041 crossref_primary_10_1109_ACCESS_2024_3398415 crossref_primary_10_1007_s11227_023_05118_1 crossref_primary_10_1016_j_eswa_2024_123703 crossref_primary_10_1016_j_ins_2022_07_187 crossref_primary_10_1109_TCYB_2023_3341982 crossref_primary_10_1016_j_apenergy_2024_124853 crossref_primary_10_1016_j_ins_2022_10_077 crossref_primary_10_1016_j_engappai_2025_110056 crossref_primary_10_1016_j_rineng_2025_104372 crossref_primary_10_1016_j_ins_2022_09_057 crossref_primary_10_1016_j_swevo_2023_101317 crossref_primary_10_1016_j_asoc_2024_112516 crossref_primary_10_1016_j_ins_2024_121364 crossref_primary_10_1007_s12293_023_00401_3 crossref_primary_10_1016_j_ins_2022_06_056 crossref_primary_10_1016_j_swevo_2022_101166 crossref_primary_10_1016_j_swevo_2024_101566 crossref_primary_10_1016_j_ins_2022_05_005 crossref_primary_10_1007_s00521_023_08633_7 crossref_primary_10_1016_j_swevo_2024_101641 crossref_primary_10_3390_su15032622 crossref_primary_10_1007_s13042_024_02297_y |
| Cites_doi | 10.1109/TCYB.2015.2501726 10.1109/TEVC.2017.2725902 10.1007/s40747-017-0039-7 10.1109/TEVC.2016.2587808 10.1109/TEVC.2016.2592479 10.1109/TEVC.2018.2865590 10.1016/j.ins.2020.03.104 10.1080/01621459.1993.10476408 10.1109/TCYB.2017.2737554 10.1162/evco_a_00269 10.1109/TEVC.2017.2695579 10.1145/2480741.2480752 10.1016/j.ins.2020.12.025 10.1016/j.ins.2018.12.078 10.1109/SMC.2017.8122921 10.1109/TEVC.2017.2749619 10.1109/TCYB.2015.2403849 10.1016/j.ejor.2008.07.025 10.1109/TEVC.2007.892759 10.1109/TCYB.2017.2737519 10.1145/3205455.3205648 10.1016/j.ins.2020.05.082 10.1109/TEVC.2020.2978158 10.1145/2739480.2754687 10.1007/BF01530777 10.1016/j.asoc.2016.11.009 10.1109/TCYB.2018.2883914 10.1080/00207729608929211 10.1109/TEVC.2016.2519378 10.1109/TEVC.2013.2281535 10.1016/j.swevo.2011.02.002 10.1109/TEVC.2005.861417 10.1109/TEVC.2016.2521175 10.1016/j.ins.2017.07.015 10.1109/TEVC.2018.2874465 10.1007/1-84628-137-7_6 10.1109/ICNC.2011.6022367 10.1109/TEVC.2018.2865931 10.1016/j.ins.2021.01.015 10.1109/MCI.2017.2742868 10.1109/TEVC.2013.2281534 10.1016/j.ins.2019.11.047 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2021.03.067 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 377 |
| ExternalDocumentID | 10_1016_j_ins_2021_03_067 S0020025521003182 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c340t-8660225d3ac2cbc7f90db90f613afbef60b3ddd88bd7ebca8ef4adb506ba036d3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683568800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 06:59:14 EST 2025 Tue Nov 18 21:14:49 EST 2025 Fri Feb 23 02:43:35 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiobjective optimization problems Exploration Weights updated adaptively The decomposition-based multiobjective evolutionary algorithm Exploitation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-8660225d3ac2cbc7f90db90f613afbef60b3ddd88bd7ebca8ef4adb506ba036d3 |
| OpenAccessLink | https://birmingham.elsevierpure.com/en/publications/53ac4c63-bd6e-4a97-b71c-4c0492f00cc2 |
| PageCount | 35 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2021_03_067 crossref_primary_10_1016_j_ins_2021_03_067 elsevier_sciencedirect_doi_10_1016_j_ins_2021_03_067 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Ge, Zhao, Sun, Wang, Tan, Zhang, Chen (b0135) 2018; 23 Vlennet, Fonteix, Marc (b0215) 1996; 27 Jain, Deb (b0085) 2014; 18 Liu, Chen, Zhang, Deb (b0150) 2018; 22 Liu, Jin, Heiderich, Rodemann (b0225) 2019; 2019 L.R.C. de Farias, P.H.M. Braga, H.F. Bassani, A.F.R. Araújo, MOEA/D with uniformly randomly adaptive weights, in: Proceedings of the Genetic and Evolutionary Computation Conference, Association for Computing Machinery, New York, NY, USA, 2018, pp. 641–648. doi:10.1145/3205455.3205648. Behmanesh, Rahimi, Gandomi (b0065) 2020 Liu, Ishibuchi, Masuyama, Nojima (b0125) 2020; 24 M. Li, S. Yang, X. Liu, A performance comparison indicator for pareto front approximations in many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 2015, pp. 703–710. doi:10.1145/2739480.2754687. Derrac, García, Molina, Herrera (b0245) 2011; 1 M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a survey, ACM Comput. Surveys 45 (3) (2013) 35:1–35:33. doi:10.1145/2480741.2480752. Huband, Hingston, Barone, While (b0210) 2006; 10 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multiobjective optimization, in: Evolutionary Multiobjective Optimization, Springer, 2005, pp. 105–145. doi:10.1007/1-84628-137-7_6. Tan, Chiam, Mamun, Goh (b0175) 2009; 197 Wang, Zhang, Zhou, Gong, Jiao (b0080) 2016; 46 Zhang, Wang, Li, Hu, Li, Wu (b0045) 2021; 563 Vafaee, Turán, Nelson, Berger-Wolf (b0170) 2014; 2014 Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b0205) 2017; 3 A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, S. Nahavandi, Openga, a c++ genetic algorithm library, in: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 2051–2056. doi:10.1109/SMC.2017.8122921. L. Zhen, M. Li, R. Cheng, D. Peng, X. Yao, Multiobjective test problems with degenerate pareto fronts, arXiv preprint arXiv:1806.02706. Rousseeuw, Croux (b0195) 1993; 88 Xiang, Zhou, Li, Chen (b0140) 2017; 21 Zhang, Li (b0020) 2007; 11 Cheng, Jin, Olhofer, Sendhoff (b0155) 2016; 20 He, Zhou, Chen, Zhang (b0145) 2019; 23 J. Siwei, C. Zhihua, Z. Jie, O. Yew-Soon, Multiobjective optimization by decomposition with pareto-adaptive weight vectors, in: 2011 Seventh International Conference on Natural Computation, vol. 3, 2011, pp. 1260–1264. doi:10.1109/ICNC.2011.6022367. Asafuddoula, Singh, Ray (b0110) 2018; 48 C. Segura, C.A. Coello Coello, E. Segredo, A.H. Aguirre, A novel diversity-based replacement strategy for evolutionary algorithms, IEEE Trans. Cybern. 46 (12) (2016) 3233–3246. doi:10.1109/TCYB.2015.2501726. Eftimov, Korošec, Seljak (b0250) 2017; 417 Luo, Huang, Yang, Li, Wang, Feng (b0015) 2020; 514 Gu, Chen, Chen, Li, Xiong (b0035) 2021; 554 De Jong, Spears (b0185) 1992; 5 Jiang, Yang (b0200) 2017; 21 Li, Yao (b0060) 2020; 28 Gu, Cheung (b0100) 2018; 22 Ishibuchi, Masuda, Tanigaki, Nojima (b0030) 2015 Wang, Zhang, Zhang (b0230) 2016; 20 Ma, Yu, Li, Qi, Zhu (b0120) 2020; 24 Cai, Mei, Fan (b0160) 2018; 48 Tian, Cheng, Zhang, Cheng, Jin (b0040) 2018; 22 Liu, Gong, Sun, Zhang (b0235) 2017; 50 Xiang Wang, Shun Li, Zhen Tao, Hui Gu (b0075) 2020; 539 Wu, Li, Kwong, Zhang, Zhang (b0090) 2019; 23 Liu, Yu, Lin, Tan (b0025) 2020; 537 Derbel, Liefooghe, Zhang, Aguirre, Tanaka (b0070) 2016 Tian, Cheng, Zhang, Jin (b0240) 2017; 12 Li, Sun, Zhang, Shui (b0050) 2019 Liu, Zhu, Li, Li, Zheng, Li (b0010) 2020; 509 Tian, Zhang, Cheng, He, Jin (b0130) 2020; 50 Deb, Jain (b0055) 2014; 18 Jain (10.1016/j.ins.2021.03.067_b0085) 2014; 18 10.1016/j.ins.2021.03.067_b0115 Li (10.1016/j.ins.2021.03.067_b0060) 2020; 28 Derrac (10.1016/j.ins.2021.03.067_b0245) 2011; 1 Liu (10.1016/j.ins.2021.03.067_b0150) 2018; 22 Liu (10.1016/j.ins.2021.03.067_b0010) 2020; 509 10.1016/j.ins.2021.03.067_b0190 Vafaee (10.1016/j.ins.2021.03.067_b0170) 2014; 2014 Ishibuchi (10.1016/j.ins.2021.03.067_b0030) 2015 Tan (10.1016/j.ins.2021.03.067_b0175) 2009; 197 Ma (10.1016/j.ins.2021.03.067_b0120) 2020; 24 Rousseeuw (10.1016/j.ins.2021.03.067_b0195) 1993; 88 10.1016/j.ins.2021.03.067_b0105 Liu (10.1016/j.ins.2021.03.067_b0125) 2020; 24 Gu (10.1016/j.ins.2021.03.067_b0035) 2021; 554 Tian (10.1016/j.ins.2021.03.067_b0040) 2018; 22 Wang (10.1016/j.ins.2021.03.067_b0230) 2016; 20 10.1016/j.ins.2021.03.067_b0220 Luo (10.1016/j.ins.2021.03.067_b0015) 2020; 514 Wu (10.1016/j.ins.2021.03.067_b0090) 2019; 23 Huband (10.1016/j.ins.2021.03.067_b0210) 2006; 10 10.1016/j.ins.2021.03.067_b0180 Cheng (10.1016/j.ins.2021.03.067_b0155) 2016; 20 Wang (10.1016/j.ins.2021.03.067_b0080) 2016; 46 Jiang (10.1016/j.ins.2021.03.067_b0200) 2017; 21 Derbel (10.1016/j.ins.2021.03.067_b0070) 2016 Eftimov (10.1016/j.ins.2021.03.067_b0250) 2017; 417 Zhang (10.1016/j.ins.2021.03.067_b0020) 2007; 11 Xiang (10.1016/j.ins.2021.03.067_b0140) 2017; 21 Liu (10.1016/j.ins.2021.03.067_b0025) 2020; 537 Behmanesh (10.1016/j.ins.2021.03.067_b0065) 2020 10.1016/j.ins.2021.03.067_b0095 Tian (10.1016/j.ins.2021.03.067_b0240) 2017; 12 Ge (10.1016/j.ins.2021.03.067_b0135) 2018; 23 He (10.1016/j.ins.2021.03.067_b0145) 2019; 23 Li (10.1016/j.ins.2021.03.067_b0050) 2019 Liu (10.1016/j.ins.2021.03.067_b0235) 2017; 50 Asafuddoula (10.1016/j.ins.2021.03.067_b0110) 2018; 48 Xiang Wang (10.1016/j.ins.2021.03.067_b0075) 2020; 539 10.1016/j.ins.2021.03.067_b0005 Tian (10.1016/j.ins.2021.03.067_b0130) 2020; 50 10.1016/j.ins.2021.03.067_b0165 De Jong (10.1016/j.ins.2021.03.067_b0185) 1992; 5 Deb (10.1016/j.ins.2021.03.067_b0055) 2014; 18 Cai (10.1016/j.ins.2021.03.067_b0160) 2018; 48 Gu (10.1016/j.ins.2021.03.067_b0100) 2018; 22 Cheng (10.1016/j.ins.2021.03.067_b0205) 2017; 3 Zhang (10.1016/j.ins.2021.03.067_b0045) 2021; 563 Liu (10.1016/j.ins.2021.03.067_b0225) 2019; 2019 Vlennet (10.1016/j.ins.2021.03.067_b0215) 1996; 27 |
| References_xml | – start-page: 1 year: 2020 end-page: 16 ident: b0065 article-title: Evolutionary many-objective algorithms for combinatorial optimization problems: a comparative study publication-title: Arch. Comput. Methods Eng. – volume: 18 start-page: 602 year: 2014 end-page: 622 ident: b0085 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. – volume: 24 start-page: 439 year: 2020 end-page: 453 ident: b0125 article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts publication-title: IEEE Trans. Evol. Comput. – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b0240 article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b0055 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 417 start-page: 186 year: 2017 end-page: 215 ident: b0250 article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics publication-title: Inf. Sci. – volume: 563 start-page: 70 year: 2021 end-page: 90 ident: b0045 article-title: Many-objective evolutionary algorithm with adaptive reference vector publication-title: Inf. Sci. – volume: 2014 start-page: 2570 year: 2014 end-page: 2577 ident: b0170 article-title: Balancing the exploration and exploitation in an adaptive diversity guided genetic algorithm publication-title: IEEE Congress on Evolutionary Computation (CEC) – reference: M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a survey, ACM Comput. Surveys 45 (3) (2013) 35:1–35:33. doi:10.1145/2480741.2480752. – volume: 23 start-page: 361 year: 2019 end-page: 375 ident: b0145 article-title: Evolutionary many-objective optimization based on dynamical decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 509 start-page: 376 year: 2020 end-page: 399 ident: b0010 article-title: An angle dominance criterion for evolutionary many-objective optimization publication-title: Inf. Sci. – reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multiobjective optimization, in: Evolutionary Multiobjective Optimization, Springer, 2005, pp. 105–145. doi:10.1007/1-84628-137-7_6. – volume: 46 start-page: 474 year: 2016 end-page: 486 ident: b0080 article-title: Adaptive replacement strategies for MOEA/D publication-title: IEEE Trans. Cybern. – volume: 2019 start-page: 1726 year: 2019 end-page: 1733 ident: b0225 article-title: Adaptation of reference vectors for evolutionary many-objective optimization of problems with irregular pareto fronts publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 539 start-page: 1 year: 2020 end-page: 15 ident: b0075 article-title: An improved moea/d algorithm with an adaptive evolutionary strategy publication-title: Inf. Sci. – volume: 20 start-page: 821 year: 2016 end-page: 837 ident: b0230 article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. – reference: J. Siwei, C. Zhihua, Z. Jie, O. Yew-Soon, Multiobjective optimization by decomposition with pareto-adaptive weight vectors, in: 2011 Seventh International Conference on Natural Computation, vol. 3, 2011, pp. 1260–1264. doi:10.1109/ICNC.2011.6022367. – volume: 48 start-page: 2335 year: 2018 end-page: 2348 ident: b0160 article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors publication-title: IEEE Trans. Cybern. – reference: A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, S. Nahavandi, Openga, a c++ genetic algorithm library, in: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 2051–2056. doi:10.1109/SMC.2017.8122921. – volume: 28 start-page: 227 year: 2020 end-page: 253 ident: b0060 article-title: What weights work for you? Adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation publication-title: Evol. Comput. – reference: L.R.C. de Farias, P.H.M. Braga, H.F. Bassani, A.F.R. Araújo, MOEA/D with uniformly randomly adaptive weights, in: Proceedings of the Genetic and Evolutionary Computation Conference, Association for Computing Machinery, New York, NY, USA, 2018, pp. 641–648. doi:10.1145/3205455.3205648. – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b0155 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 329 year: 2017 end-page: 346 ident: b0200 article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 88 start-page: 1273 year: 1993 end-page: 1283 ident: b0195 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. – volume: 50 start-page: 344 year: 2017 end-page: 355 ident: b0235 article-title: Many-objective evolutionary optimization based on reference points publication-title: Appl. Soft Comput. – volume: 5 start-page: 1 year: 1992 end-page: 26 ident: b0185 article-title: A formal analysis of the role of multi-point crossover in genetic algorithms publication-title: Ann. Math. Artif. Intell. – reference: M. Li, S. Yang, X. Liu, A performance comparison indicator for pareto front approximations in many-objective optimization, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA, 2015, pp. 703–710. doi:10.1145/2739480.2754687. – reference: C. Segura, C.A. Coello Coello, E. Segredo, A.H. Aguirre, A novel diversity-based replacement strategy for evolutionary algorithms, IEEE Trans. Cybern. 46 (12) (2016) 3233–3246. doi:10.1109/TCYB.2015.2501726. – start-page: 91 year: 2019 end-page: 100 ident: b0050 article-title: Adjustment of weight vectors of penalty-based boundary intersection method in MOEA/D publication-title: Evolutionary Multi-Criterion Optimization – volume: 514 start-page: 166 year: 2020 end-page: 202 ident: b0015 article-title: A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization publication-title: Inf. Sci. – volume: 48 start-page: 2321 year: 2018 end-page: 2334 ident: b0110 article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors publication-title: IEEE Trans. Cybern. – volume: 22 start-page: 211 year: 2018 end-page: 225 ident: b0100 article-title: Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm publication-title: IEEE Trans. Evol. Comput. – start-page: 110 year: 2015 end-page: 125 ident: b0030 article-title: Modified distance calculation in generational distance and inverted generational distance publication-title: Evolutionary Multi-Criterion Optimization – volume: 22 start-page: 609 year: 2018 end-page: 622 ident: b0040 article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility publication-title: IEEE Trans. Evol. Comput. – volume: 197 start-page: 701 year: 2009 end-page: 713 ident: b0175 article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization publication-title: Eur. J. Oper. Res. – volume: 24 start-page: 634 year: 2020 end-page: 649 ident: b0120 article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 131 year: 2017 end-page: 152 ident: b0140 article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b0020 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 537 start-page: 261 year: 2020 end-page: 283 ident: b0025 article-title: An adaptive clustering-based evolutionary algorithm for many-objective optimization problems publication-title: Inf. Sci. – volume: 50 start-page: 1106 year: 2020 end-page: 1119 ident: b0130 article-title: Guiding evolutionary multiobjective optimization with generic front modeling publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 477 year: 2006 end-page: 506 ident: b0210 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. – volume: 27 start-page: 255 year: 1996 end-page: 260 ident: b0215 article-title: Multicriteria optimization using a genetic algorithm for determining a Pareto set publication-title: Int. J. Syst. Sci. – reference: L. Zhen, M. Li, R. Cheng, D. Peng, X. Yao, Multiobjective test problems with degenerate pareto fronts, arXiv preprint arXiv:1806.02706. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0245 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 554 start-page: 236 year: 2021 end-page: 255 ident: b0035 article-title: A many-objective evolutionary algorithm with reference points-based strengthened dominance relation publication-title: Inf. Sci. – volume: 23 start-page: 376 year: 2019 end-page: 390 ident: b0090 article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 3 start-page: 67 year: 2017 end-page: 81 ident: b0205 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex Intell. Syst. – volume: 22 start-page: 433 year: 2018 end-page: 448 ident: b0150 article-title: Adaptively allocating search effort in challenging many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. – start-page: 431 year: 2016 end-page: 441 ident: b0070 article-title: Multi-objective local search based on decomposition publication-title: Parallel Problem Solving from Nature – PPSN XIV – volume: 23 start-page: 572 year: 2018 end-page: 586 ident: b0135 article-title: A many-objective evolutionary algorithm with two interacting processes: cascade clustering and reference point incremental learning publication-title: IEEE Trans. Evol. Comput. – volume: 2019 start-page: 1726 year: 2019 ident: 10.1016/j.ins.2021.03.067_b0225 article-title: Adaptation of reference vectors for evolutionary many-objective optimization of problems with irregular pareto fronts publication-title: IEEE Congress on Evolutionary Computation (CEC) – ident: 10.1016/j.ins.2021.03.067_b0180 doi: 10.1109/TCYB.2015.2501726 – volume: 22 start-page: 433 issue: 3 year: 2018 ident: 10.1016/j.ins.2021.03.067_b0150 article-title: Adaptively allocating search effort in challenging many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2725902 – volume: 3 start-page: 67 issue: 1 year: 2017 ident: 10.1016/j.ins.2021.03.067_b0205 article-title: A benchmark test suite for evolutionary many-objective optimization publication-title: Complex Intell. Syst. doi: 10.1007/s40747-017-0039-7 – start-page: 91 year: 2019 ident: 10.1016/j.ins.2021.03.067_b0050 article-title: Adjustment of weight vectors of penalty-based boundary intersection method in MOEA/D – start-page: 110 year: 2015 ident: 10.1016/j.ins.2021.03.067_b0030 article-title: Modified distance calculation in generational distance and inverted generational distance – volume: 21 start-page: 131 issue: 1 year: 2017 ident: 10.1016/j.ins.2021.03.067_b0140 article-title: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2587808 – volume: 21 start-page: 329 issue: 3 year: 2017 ident: 10.1016/j.ins.2021.03.067_b0200 article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2592479 – volume: 23 start-page: 361 issue: 3 year: 2019 ident: 10.1016/j.ins.2021.03.067_b0145 article-title: Evolutionary many-objective optimization based on dynamical decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2865590 – volume: 537 start-page: 261 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0025 article-title: An adaptive clustering-based evolutionary algorithm for many-objective optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.03.104 – volume: 88 start-page: 1273 issue: 424 year: 1993 ident: 10.1016/j.ins.2021.03.067_b0195 article-title: Alternatives to the median absolute deviation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476408 – volume: 48 start-page: 2335 issue: 8 year: 2018 ident: 10.1016/j.ins.2021.03.067_b0160 article-title: A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2737554 – volume: 28 start-page: 227 issue: 2 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0060 article-title: What weights work for you? Adapting weights for any pareto front shape in decomposition-based evolutionary multiobjective optimisation publication-title: Evol. Comput. doi: 10.1162/evco_a_00269 – volume: 22 start-page: 211 issue: 2 year: 2018 ident: 10.1016/j.ins.2021.03.067_b0100 article-title: Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2695579 – ident: 10.1016/j.ins.2021.03.067_b0190 doi: 10.1145/2480741.2480752 – volume: 554 start-page: 236 year: 2021 ident: 10.1016/j.ins.2021.03.067_b0035 article-title: A many-objective evolutionary algorithm with reference points-based strengthened dominance relation publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.12.025 – volume: 509 start-page: 376 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0010 article-title: An angle dominance criterion for evolutionary many-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.12.078 – ident: 10.1016/j.ins.2021.03.067_b0005 doi: 10.1109/SMC.2017.8122921 – volume: 22 start-page: 609 issue: 4 year: 2018 ident: 10.1016/j.ins.2021.03.067_b0040 article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2749619 – volume: 46 start-page: 474 issue: 2 year: 2016 ident: 10.1016/j.ins.2021.03.067_b0080 article-title: Adaptive replacement strategies for MOEA/D publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2403849 – volume: 197 start-page: 701 issue: 2 year: 2009 ident: 10.1016/j.ins.2021.03.067_b0175 article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2008.07.025 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ins.2021.03.067_b0020 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 48 start-page: 2321 issue: 8 year: 2018 ident: 10.1016/j.ins.2021.03.067_b0110 article-title: An enhanced decomposition-based evolutionary algorithm with adaptive reference vectors publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2737519 – ident: 10.1016/j.ins.2021.03.067_b0165 doi: 10.1145/3205455.3205648 – volume: 539 start-page: 1 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0075 article-title: An improved moea/d algorithm with an adaptive evolutionary strategy publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.082 – volume: 24 start-page: 634 issue: 4 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0120 article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2978158 – ident: 10.1016/j.ins.2021.03.067_b0105 doi: 10.1145/2739480.2754687 – volume: 5 start-page: 1 issue: 1 year: 1992 ident: 10.1016/j.ins.2021.03.067_b0185 article-title: A formal analysis of the role of multi-point crossover in genetic algorithms publication-title: Ann. Math. Artif. Intell. doi: 10.1007/BF01530777 – volume: 50 start-page: 344 year: 2017 ident: 10.1016/j.ins.2021.03.067_b0235 article-title: Many-objective evolutionary optimization based on reference points publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.11.009 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0065 article-title: Evolutionary many-objective algorithms for combinatorial optimization problems: a comparative study publication-title: Arch. Comput. Methods Eng. – volume: 50 start-page: 1106 issue: 3 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0130 article-title: Guiding evolutionary multiobjective optimization with generic front modeling publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2883914 – volume: 27 start-page: 255 issue: 2 year: 1996 ident: 10.1016/j.ins.2021.03.067_b0215 article-title: Multicriteria optimization using a genetic algorithm for determining a Pareto set publication-title: Int. J. Syst. Sci. doi: 10.1080/00207729608929211 – ident: 10.1016/j.ins.2021.03.067_b0220 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.ins.2021.03.067_b0155 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.ins.2021.03.067_b0055 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.ins.2021.03.067_b0245 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: 10.1016/j.ins.2021.03.067_b0210 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.861417 – volume: 20 start-page: 821 issue: 6 year: 2016 ident: 10.1016/j.ins.2021.03.067_b0230 article-title: Decomposition-based algorithms using pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2521175 – volume: 417 start-page: 186 year: 2017 ident: 10.1016/j.ins.2021.03.067_b0250 article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.015 – volume: 23 start-page: 572 issue: 4 year: 2018 ident: 10.1016/j.ins.2021.03.067_b0135 article-title: A many-objective evolutionary algorithm with two interacting processes: cascade clustering and reference point incremental learning publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2874465 – ident: 10.1016/j.ins.2021.03.067_b0115 doi: 10.1007/1-84628-137-7_6 – ident: 10.1016/j.ins.2021.03.067_b0095 doi: 10.1109/ICNC.2011.6022367 – volume: 23 start-page: 376 issue: 3 year: 2019 ident: 10.1016/j.ins.2021.03.067_b0090 article-title: Learning to decompose: a paradigm for decomposition-based multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2865931 – volume: 563 start-page: 70 year: 2021 ident: 10.1016/j.ins.2021.03.067_b0045 article-title: Many-objective evolutionary algorithm with adaptive reference vector publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.015 – volume: 2014 start-page: 2570 year: 2014 ident: 10.1016/j.ins.2021.03.067_b0170 article-title: Balancing the exploration and exploitation in an adaptive diversity guided genetic algorithm publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.ins.2021.03.067_b0240 article-title: PlatEMO: a matlab platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 24 start-page: 439 issue: 3 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0125 article-title: Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular pareto fronts publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 10.1016/j.ins.2021.03.067_b0085 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 – volume: 514 start-page: 166 year: 2020 ident: 10.1016/j.ins.2021.03.067_b0015 article-title: A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.11.047 – start-page: 431 year: 2016 ident: 10.1016/j.ins.2021.03.067_b0070 article-title: Multi-objective local search based on decomposition |
| SSID | ssj0004766 |
| Score | 2.5040007 |
| Snippet | •A new trigger is developed to control when the weight should be updated.•A new adaptive weighting method is proposed.•A new decomposition algorithm with... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 343 |
| SubjectTerms | Exploitation Exploration Multiobjective optimization problems The decomposition-based multiobjective evolutionary algorithm Weights updated adaptively |
| Title | A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively |
| URI | https://dx.doi.org/10.1016/j.ins.2021.03.067 |
| Volume | 572 |
| WOSCitedRecordID | wos000683568800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wCHCQaIMYZ8QByoLLl2PpxjhYa2aZo4DKmCQ2TnOVu6klZts-3Pnx07Hx0bYgcuUWXVbtLfL8_P7xOhTyHPBYsZEAE5kEBKSaQKY8ICoUaMZjKAumvJSXx6KiaT5Lv3mK7qdgJxWYqbm2TxX6E2YwZsmzr7CLjbRc2A-WxAN1cDu7n-E_DjIWgbKO6jsYjdp8AFDs7V1Mm3ob7y92CD5uTsfL4s1he_nVX2uraWrobVwloDYChBLuyk2YYH2Ocx1fTx22irnp8UVS3aq456h26kuKzaoZ8XleNiea7m3VSfLTQr-gYJNmojrroEAUrsUaUvZEPXoMeLSe5KM_kdl7tGLn8Ic2dXmJoTiK2rzkZ1NVrXvGOzcPadDa0NM2wi2KapWSK1S6SUp2aJp2iLxWEiBmhrfHQwOe4yaWPn3W4eofGD1xGBd-7jfk2mp52cvUTb_liBx44Or9ATXe6gF71ikzto36eo4M-4hx32wv01-jXG9xAHbxIH94mDW-JgSxzsiYM9cXBHnDfox7eDs6-HxLfeIBkP6JqIKDLKXQhcZixTWZwnFFRCc6P8yVzpPKKKA4AQCmIbTid0HkhQIY2UNDoR8LdoUM5L_Q5hkemQMxmFoFQguVH5gSmtrb9aBkKqXUSbvzHNfF162x5llj4I3y760k5ZuKIsf_ty0GCT-tfBaYup4dnD094_5jf20PPuTfiAButlpffRs-xqXayWHz3JbgF9JJ4G |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition-based+multiobjective+evolutionary+algorithm+with+weights+updated+adaptively&rft.jtitle=Information+sciences&rft.au=Liu%2C+Yuan&rft.au=Hu%2C+Yikun&rft.au=Zhu%2C+Ningbo&rft.au=Li%2C+Kenli&rft.date=2021-09-01&rft.issn=0020-0255&rft.volume=572&rft.spage=343&rft.epage=377&rft_id=info:doi/10.1016%2Fj.ins.2021.03.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_03_067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |