Population-based Algorithm Portfolios with automated constituent algorithms selection
Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical optimization problems. Particularly, PAP has shown significant advantages to single EAs when a number of problems need to be solved simultaneou...
Saved in:
| Published in: | Information sciences Vol. 279; pp. 94 - 104 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
20.09.2014
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical optimization problems. Particularly, PAP has shown significant advantages to single EAs when a number of problems need to be solved simultaneously. Previous investigation on PAP reveals that choosing appropriate constituent algorithms is crucial to the success of PAP. However, no method has been developed for this purpose. In this paper, an extended version of PAP, namely PAP based on Estimated Performance Matrix (EPM-PAP) is proposed. EPM-PAP is equipped with a novel constituent algorithms selection module, which is based on the EPM of each candidate EAs. Empirical studies demonstrate that the EPM-based selection method can successfully identify appropriate constituent EAs, and thus EPM-PAP outperformed all single EAs considered in this work. |
|---|---|
| AbstractList | Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical optimization problems. Particularly, PAP has shown significant advantages to single EAs when a number of problems need to be solved simultaneously. Previous investigation on PAP reveals that choosing appropriate constituent algorithms is crucial to the success of PAP. However, no method has been developed for this purpose. In this paper, an extended version of PAP, namely PAP based on Estimated Performance Matrix (EPM-PAP) is proposed. EPM-PAP is equipped with a novel constituent algorithms selection module, which is based on the EPM of each candidate EAs. Empirical studies demonstrate that the EPM-based selection method can successfully identify appropriate constituent EAs, and thus EPM-PAP outperformed all single EAs considered in this work. |
| Author | Tang, Ke Yao, Xin Peng, Fei Chen, Guoliang |
| Author_xml | – sequence: 1 givenname: Ke surname: Tang fullname: Tang, Ke email: ketang@ustc.edu.cn organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China – sequence: 2 givenname: Fei surname: Peng fullname: Peng, Fei organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China – sequence: 3 givenname: Guoliang surname: Chen fullname: Chen, Guoliang organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China – sequence: 4 givenname: Xin surname: Yao fullname: Yao, Xin organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China |
| BookMark | eNp9kM9KAzEYxINUsK0-gLd9ga1fspuki6dS_AeCPdhzyCbfasp2U5JU8e1NrV489DQwzG9gZkJGgx-QkGsKMwpU3GxmbogzBrSeQZUtfkbGdC5ZKVhDR2QMwKAExvkFmcS4AYBaCjEm65Xf7XudnB_KVke0xaJ_88Gl922x8iF1vnc-Fp_ZKPQ--a1OOWP8EJNLexxSof_ysYjYozlUXZLzTvcRr351Stb3d6_Lx_L55eFpuXguTVVDKiXYjpq2tsIKZBVvOlGDka3WrGqZlQabms-5bREb3lVzI0WONEZzyWjb2WpK5LHXBB9jwE4Zl37GpKBdryiowztqo_I76vCOgipbPJP0H7kLbqvD10nm9shgnvThMKhoHA4GrQt5t7LenaC_ATwMgp8 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2015_05_010 crossref_primary_10_1016_j_knosys_2024_111628 crossref_primary_10_1016_j_engappai_2021_104284 crossref_primary_10_1016_j_ins_2014_11_023 crossref_primary_10_1007_s12293_022_00367_8 crossref_primary_10_1007_s11590_015_0927_y crossref_primary_10_1016_j_swevo_2018_07_001 crossref_primary_10_1109_TEVC_2022_3197298 crossref_primary_10_1016_j_ins_2017_09_053 crossref_primary_10_1109_TASE_2021_3084741 crossref_primary_10_1016_j_neucom_2017_03_061 crossref_primary_10_1007_s12293_016_0221_2 crossref_primary_10_1016_j_swevo_2018_08_015 crossref_primary_10_1109_MCI_2023_3277772 crossref_primary_10_1016_j_swevo_2016_05_003 crossref_primary_10_3390_electronics12224639 crossref_primary_10_1007_s00521_018_3457_6 crossref_primary_10_1109_TCYB_2017_2772849 crossref_primary_10_1007_s00500_018_3302_y crossref_primary_10_1109_TAI_2025_3545792 crossref_primary_10_1007_s11721_019_00170_1 crossref_primary_10_1007_s10586_018_1725_y crossref_primary_10_1016_j_swevo_2018_04_005 crossref_primary_10_1109_TEVC_2022_3169770 crossref_primary_10_1109_MCI_2020_2976182 crossref_primary_10_1007_s00500_015_1955_3 crossref_primary_10_1007_s12293_015_0159_9 crossref_primary_10_1109_TEVC_2014_2362558 crossref_primary_10_1016_j_swevo_2020_100694 crossref_primary_10_1016_j_tcs_2019_10_033 crossref_primary_10_1093_nsr_nwae132 crossref_primary_10_1007_s11432_016_0089_7 crossref_primary_10_1007_s00500_017_2817_y crossref_primary_10_1007_s10898_022_01162_y crossref_primary_10_1007_s13593_015_0303_4 crossref_primary_10_1016_j_ejor_2017_10_013 crossref_primary_10_1016_j_swevo_2017_12_002 crossref_primary_10_1007_s00500_017_2742_0 crossref_primary_10_1007_s10462_020_09882_x crossref_primary_10_1007_s00500_015_1630_8 crossref_primary_10_1109_TITS_2015_2446985 crossref_primary_10_1016_j_asoc_2015_12_021 |
| Cites_doi | 10.1023/A:1019956318069 10.1109/TEVC.2010.2040183 10.1016/j.ins.2014.01.002 10.1016/S0004-3702(97)00043-X 10.1109/4235.585893 10.1162/106365602760972767 10.1109/4235.771163 10.1016/j.ins.2013.03.060 10.1016/j.ins.2013.11.032 10.1007/978-3-540-30115-8_15 10.1016/S0004-3702(00)00081-3 10.1007/978-3-540-30217-9_18 10.1109/TEVC.2003.816583 10.1023/B:MACH.0000015878.60765.42 10.1145/1538902.1538906 10.1109/TEVC.2011.2166159 10.1109/TEVC.2008.924428 10.1109/TEVC.2009.2033582 10.1126/science.275.5296.51 |
| ContentType | Journal Article |
| Copyright | 2014 The Authors |
| Copyright_xml | – notice: 2014 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ins.2014.03.105 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 104 |
| ExternalDocumentID | 10_1016_j_ins_2014_03_105 S0020025514004022 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD |
| ID | FETCH-LOGICAL-c340t-70df1cb4d6d6e2359f640c7baa23b2d7ce94585dbee95f38c769f69ca5721bfd3 |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337985200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 06:24:54 EST 2025 Tue Nov 18 22:25:52 EST 2025 Fri Feb 23 02:23:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Algorithm subset selection Global optimization Population-based Algorithm Portfolios Evolutionary optimization |
| Language | English |
| License | http://creativecommons.org/licenses/by/3.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-70df1cb4d6d6e2359f640c7baa23b2d7ce94585dbee95f38c769f69ca5721bfd3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ins.2014.03.105 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2014_03_105 crossref_primary_10_1016_j_ins_2014_03_105 elsevier_sciencedirect_doi_10_1016_j_ins_2014_03_105 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-20 |
| PublicationDateYYYYMMDD | 2014-09-20 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Deb, Anand, Joshi (b0030) 2002; 10 Giraud-Carrier, Vilalta, Brazdil (b0045) 2004; 54 Gomes, Selmon (b0050) 2001; 126 Lee, Yao (b0070) 2004; 8 Vrugt, Robinson, Hyman (b0125) 2009; 13 E. Tsang, A. Kwan, Mapping Constraint Satisfaction Problems to Algorithms and Heuristics, Technical Report CSM-198, University of Essex, UK, 1993. Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proc. 1998 IEEE International Conference on Evolutionary Computation, ICEC’98, Anchorage, AK, USA, 1998, pp. 69–73. Tang, Suganthan, Yao (b0110) 2006; 65 P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC-2005 special session on real-parameter optimization, Technical report, Nanyang Technological University, Singapore, 2005. A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1769–1776. B. Yuan, M. Gallagher, Statistical racing techniques for improved empirical evaluation of evolutionary algorithms, in: Proc. 8th International Conference on Parallel Problem Solving From Nature, PPSN’04, Birmingham, UK, 2004, pp. 172–181. M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, A racing algorithm for configuring metaheuristics, in: Proc. 4th annual Conference on Genetic and Evolutionary Computation, GECCO’02, New York, USA, 2002, pp. 11–18. Yao, Liu, Lin (b0140) 1999; 3 Vilalta, Drissi (b0120) 2002; 18 Huberman, Lukose, Hogg (b0055) 1997; 275 Mallipeddi, Suganthan (b0080) 2010; 14 Conover (b0025) 1999 M. Gagliolo, V. Zhumatiy, J. Schmidhuber, Adaptive online time allocation to search algorithms, in: Proc. 15th European Conference on Machine Learning, ECML’04, Pisa, Italy, 2004, pp. 134–143. Ali, Awad (b0005) 2014; 267 Leyton-Brown, Nudelman, Shoham (b0075) 2009; 56 Zhao, Suganthan, Zhang (b0150) 2012; 16 A. Auger, N. Hansen, Performance evaluation of an advanced local search evolutionary algorithm, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1777–1784. Demšar (b0035) 2006; 7 Siegel (b0100) 1956 Wolpert, Macready (b0130) 1997; 1 Lacroix, Molina, Herrera (b0065) 2014; 262 Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. 2008 IEEE Congress on Evolutionary Computation, CEC’08, Hong Kong, China, 2008, pp. 1110–1116. Peng, Tang, Chen, Yao (b0085) 2010; 14 Piotrowski (b0090) 2013; 241 Kohavi, John (b0060) 1997; 97 Demšar (10.1016/j.ins.2014.03.105_b0035) 2006; 7 Piotrowski (10.1016/j.ins.2014.03.105_b0090) 2013; 241 Mallipeddi (10.1016/j.ins.2014.03.105_b0080) 2010; 14 Yao (10.1016/j.ins.2014.03.105_b0140) 1999; 3 Wolpert (10.1016/j.ins.2014.03.105_b0130) 1997; 1 10.1016/j.ins.2014.03.105_b0115 Conover (10.1016/j.ins.2014.03.105_b0025) 1999 Deb (10.1016/j.ins.2014.03.105_b0030) 2002; 10 10.1016/j.ins.2014.03.105_b0145 Kohavi (10.1016/j.ins.2014.03.105_b0060) 1997; 97 Siegel (10.1016/j.ins.2014.03.105_b0100) 1956 10.1016/j.ins.2014.03.105_b0020 Lee (10.1016/j.ins.2014.03.105_b0070) 2004; 8 Leyton-Brown (10.1016/j.ins.2014.03.105_b0075) 2009; 56 Peng (10.1016/j.ins.2014.03.105_b0085) 2010; 14 10.1016/j.ins.2014.03.105_b0040 Vrugt (10.1016/j.ins.2014.03.105_b0125) 2009; 13 Ali (10.1016/j.ins.2014.03.105_b0005) 2014; 267 Gomes (10.1016/j.ins.2014.03.105_b0050) 2001; 126 Huberman (10.1016/j.ins.2014.03.105_b0055) 1997; 275 10.1016/j.ins.2014.03.105_b0105 Tang (10.1016/j.ins.2014.03.105_b0110) 2006; 65 Zhao (10.1016/j.ins.2014.03.105_b0150) 2012; 16 Vilalta (10.1016/j.ins.2014.03.105_b0120) 2002; 18 10.1016/j.ins.2014.03.105_b0015 Giraud-Carrier (10.1016/j.ins.2014.03.105_b0045) 2004; 54 10.1016/j.ins.2014.03.105_b0135 Lacroix (10.1016/j.ins.2014.03.105_b0065) 2014; 262 10.1016/j.ins.2014.03.105_b0010 10.1016/j.ins.2014.03.105_b0095 |
| References_xml | – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b0140 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. – reference: A. Auger, N. Hansen, Performance evaluation of an advanced local search evolutionary algorithm, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1777–1784. – volume: 16 start-page: 442 year: 2012 end-page: 446 ident: b0150 article-title: Decomposition based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes publication-title: IEEE Trans. Evol. Comput. – reference: B. Yuan, M. Gallagher, Statistical racing techniques for improved empirical evaluation of evolutionary algorithms, in: Proc. 8th International Conference on Parallel Problem Solving From Nature, PPSN’04, Birmingham, UK, 2004, pp. 172–181. – volume: 8 start-page: 1 year: 2004 end-page: 13 ident: b0070 article-title: Evolutionary programming using the mutations based on the Levy probability distribution publication-title: IEEE Trans. Evol. Comput. – reference: Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. 2008 IEEE Congress on Evolutionary Computation, CEC’08, Hong Kong, China, 2008, pp. 1110–1116. – volume: 262 start-page: 15 year: 2014 end-page: 31 ident: b0065 article-title: Region based memetic algorithm for real-parameter optimization publication-title: Inf. Sci. – volume: 275 start-page: 51 year: 1997 end-page: 54 ident: b0055 article-title: An economics approach to hard computational problems publication-title: Science – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0130 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0035 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – year: 1999 ident: b0025 article-title: Practical Nonparametric Statistics – reference: A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1769–1776. – volume: 65 start-page: 247 year: 2006 end-page: 271 ident: b0110 publication-title: An analysis of diversity measures – volume: 54 start-page: 187 year: 2004 end-page: 193 ident: b0045 article-title: Introduction to the special issue on meta-learning publication-title: Mach. Learn. – volume: 56 start-page: 1 year: 2009 end-page: 52 ident: b0075 article-title: Empirical hardness models: methodology and a case study on combinatorial auctions publication-title: J. ACM – volume: 14 start-page: 782 year: 2010 end-page: 800 ident: b0085 article-title: Population-based algorithm portfolios for numerical optimization publication-title: IEEE Trans. Evol. Comput. – reference: M. Gagliolo, V. Zhumatiy, J. Schmidhuber, Adaptive online time allocation to search algorithms, in: Proc. 15th European Conference on Machine Learning, ECML’04, Pisa, Italy, 2004, pp. 134–143. – volume: 10 start-page: 371 year: 2002 end-page: 395 ident: b0030 article-title: A computationally efficient evolutionary algorithm for real-parameter optimization publication-title: Evol. Comput. – volume: 13 start-page: 243 year: 2009 end-page: 259 ident: b0125 article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces publication-title: IEEE Trans. Evol. Comput. – reference: Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proc. 1998 IEEE International Conference on Evolutionary Computation, ICEC’98, Anchorage, AK, USA, 1998, pp. 69–73. – volume: 241 start-page: 164 year: 2013 end-page: 194 ident: b0090 article-title: Adaptive memetic differential evolution with global and local neighborhood-based mutation operators publication-title: Inf. Sci. – reference: M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, A racing algorithm for configuring metaheuristics, in: Proc. 4th annual Conference on Genetic and Evolutionary Computation, GECCO’02, New York, USA, 2002, pp. 11–18. – year: 1956 ident: b0100 article-title: Nonparametric Statistics for the Behavioral Sciences – volume: 14 start-page: 561 year: 2010 end-page: 597 ident: b0080 article-title: Ensemble of constraint handling techniques publication-title: IEEE Trans. Evol. Comput. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: b0060 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – reference: P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC-2005 special session on real-parameter optimization, Technical report, Nanyang Technological University, Singapore, 2005. – volume: 18 start-page: 77 year: 2002 end-page: 95 ident: b0120 article-title: A perspective view and survey of meta-learning publication-title: Artif. Intell. Rev. – volume: 267 start-page: 158 year: 2014 end-page: 190 ident: b0005 article-title: A novel class of niche hybrid cultural algorithms for continuous engineering optimization publication-title: Inf. Sci. – volume: 126 start-page: 43 year: 2001 end-page: 62 ident: b0050 article-title: Algorithm portfolios publication-title: Artif. Intell. – reference: E. Tsang, A. Kwan, Mapping Constraint Satisfaction Problems to Algorithms and Heuristics, Technical Report CSM-198, University of Essex, UK, 1993. – ident: 10.1016/j.ins.2014.03.105_b0095 – ident: 10.1016/j.ins.2014.03.105_b0020 – volume: 18 start-page: 77 issue: 2 year: 2002 ident: 10.1016/j.ins.2014.03.105_b0120 article-title: A perspective view and survey of meta-learning publication-title: Artif. Intell. Rev. doi: 10.1023/A:1019956318069 – volume: 14 start-page: 782 issue: 5 year: 2010 ident: 10.1016/j.ins.2014.03.105_b0085 article-title: Population-based algorithm portfolios for numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2040183 – ident: 10.1016/j.ins.2014.03.105_b0135 – volume: 267 start-page: 158 year: 2014 ident: 10.1016/j.ins.2014.03.105_b0005 article-title: A novel class of niche hybrid cultural algorithms for continuous engineering optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.01.002 – ident: 10.1016/j.ins.2014.03.105_b0010 – volume: 65 start-page: 247 year: 2006 ident: 10.1016/j.ins.2014.03.105_b0110 publication-title: An analysis of diversity measures – volume: 97 start-page: 273 issue: 1–2 year: 1997 ident: 10.1016/j.ins.2014.03.105_b0060 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.ins.2014.03.105_b0130 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 10 start-page: 371 issue: 4 year: 2002 ident: 10.1016/j.ins.2014.03.105_b0030 article-title: A computationally efficient evolutionary algorithm for real-parameter optimization publication-title: Evol. Comput. doi: 10.1162/106365602760972767 – ident: 10.1016/j.ins.2014.03.105_b0115 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.ins.2014.03.105_b0140 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – ident: 10.1016/j.ins.2014.03.105_b0105 – volume: 241 start-page: 164 year: 2013 ident: 10.1016/j.ins.2014.03.105_b0090 article-title: Adaptive memetic differential evolution with global and local neighborhood-based mutation operators publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.03.060 – volume: 262 start-page: 15 year: 2014 ident: 10.1016/j.ins.2014.03.105_b0065 article-title: Region based memetic algorithm for real-parameter optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.11.032 – ident: 10.1016/j.ins.2014.03.105_b0040 doi: 10.1007/978-3-540-30115-8_15 – volume: 126 start-page: 43 issue: 1–2 year: 2001 ident: 10.1016/j.ins.2014.03.105_b0050 article-title: Algorithm portfolios publication-title: Artif. Intell. doi: 10.1016/S0004-3702(00)00081-3 – year: 1956 ident: 10.1016/j.ins.2014.03.105_b0100 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ins.2014.03.105_b0035 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.ins.2014.03.105_b0145 doi: 10.1007/978-3-540-30217-9_18 – year: 1999 ident: 10.1016/j.ins.2014.03.105_b0025 – volume: 8 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.ins.2014.03.105_b0070 article-title: Evolutionary programming using the mutations based on the Levy probability distribution publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.816583 – volume: 54 start-page: 187 issue: 3 year: 2004 ident: 10.1016/j.ins.2014.03.105_b0045 article-title: Introduction to the special issue on meta-learning publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000015878.60765.42 – volume: 56 start-page: 1 issue: 4 year: 2009 ident: 10.1016/j.ins.2014.03.105_b0075 article-title: Empirical hardness models: methodology and a case study on combinatorial auctions publication-title: J. ACM doi: 10.1145/1538902.1538906 – volume: 16 start-page: 442 issue: 3 year: 2012 ident: 10.1016/j.ins.2014.03.105_b0150 article-title: Decomposition based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2166159 – ident: 10.1016/j.ins.2014.03.105_b0015 – volume: 13 start-page: 243 issue: 2 year: 2009 ident: 10.1016/j.ins.2014.03.105_b0125 article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.924428 – volume: 14 start-page: 561 issue: 4 year: 2010 ident: 10.1016/j.ins.2014.03.105_b0080 article-title: Ensemble of constraint handling techniques publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033582 – volume: 275 start-page: 51 issue: 5296 year: 1997 ident: 10.1016/j.ins.2014.03.105_b0055 article-title: An economics approach to hard computational problems publication-title: Science doi: 10.1126/science.275.5296.51 |
| SSID | ssj0004766 |
| Score | 2.4061093 |
| Snippet | Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 94 |
| SubjectTerms | Algorithm subset selection Evolutionary optimization Global optimization Population-based Algorithm Portfolios |
| Title | Population-based Algorithm Portfolios with automated constituent algorithms selection |
| URI | https://dx.doi.org/10.1016/j.ins.2014.03.105 |
| Volume | 279 |
| WOSCitedRecordID | wos000337985200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Lb9MwGLeg48AOaAwQGwz5gDhQRUpsJ46PFdoYD007dKi3KHac0aokU5tO-_P3OX6kjIcAiUsUWXYS-fvle_l7IPSagxCgpZSRlqKMmEjqSKYxhTsNkKmUUH0Fvi-f-dlZPpuJc3dcsO7bCfCmyW9uxNV_JTWMAbFN6uxfkDs8FAbgHogOVyA7XP-I8OehJVdkRFQ1niwv29W8-_ptbMJG63Y5b31O26ZrQWPVJrPNBg30Eed-_nq87rvkeNItfNR7yHgcOwEaFPOpcz9_0gPPtSMnej6EElhe937TGifLZeA8Ze-3nbli4M4XkTATOEHiwUHmk2S-i-E0GmlkTBcrciyfzTmJMmIbdXlGTGxbGcdKbe9jJ5Rdj-If-L11PSzASDGl1xNmCtYmcToItxByaE6lewMqMVwLNJf7aIfwVOQjtDP5cDz7OGTTcnvC7T_bn4X3UYF3XvRzbWZLQ5nuoUfOtMATC4nH6J5u9tHuVsHJfXTk0lTwG7xFRewY_BN0cRc8OIAHD-DBBjw4gAdvgQcP4MEBPE_Rxcnx9N1p5BpvRIqyuIt4XNWJkqzKqkwTmoo6Y7HisiwJlaTiSgsGZmYltRZpTXPFM5giVJlyksi6os_QqGkb_RxhnoPKKzOaMU2ZrGWZyjwzJYYkbG1NkgMU-w0slKtKb5qjLAsffrgoYM8Ls-dFTGEoPUBvw5IrW5Lld5OZp0rhfgmrKxYAoV8vO_y3ZS_Qw-G3eIlG3Wqjj9ADdd3N16tXDmi3B2CdZg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population-based+Algorithm+Portfolios+with+automated+constituent+algorithms+selection&rft.jtitle=Information+sciences&rft.au=Tang%2C+Ke&rft.au=Peng%2C+Fei&rft.au=Chen%2C+Guoliang&rft.au=Yao%2C+Xin&rft.date=2014-09-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=279&rft.spage=94&rft.epage=104&rft_id=info:doi/10.1016%2Fj.ins.2014.03.105&rft.externalDocID=S0020025514004022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |