Resolvent sampling based Rayleigh–Ritz method for large-scale nonlinear eigenvalue problems

A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and reliability of the solution, which is a challenging task in computational science and engineering. The proposed algorithm utilizes the Rayleigh–Rit...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 310; pp. 33 - 57
Main Authors: Xiao, Jinyou, Meng, Shuangshuang, Zhang, Chuanzeng, Zheng, Changjun
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2016
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and reliability of the solution, which is a challenging task in computational science and engineering. The proposed algorithm utilizes the Rayleigh–Ritz procedure to compute all eigenvalues and the corresponding eigenvectors lying within a given contour in the complex plane. The main novelties are the following. First and foremost, the approximate eigenspace is constructed by using the values of the resolvent at a series of sampling points on the contour, which effectively circumvents the unreliability of previous schemes that using high-order contour moments of the resolvent. Secondly, an improved Sakurai–Sugiura algorithm is proposed to solve the projected NEPs with enhancements on reliability and accuracy. The user-defined probing matrix in the original algorithm is avoided and the number of eigenvalues is determined automatically by the provided strategies. Finally, by approximating the projected matrices with the Chebyshev interpolation technique, RSRR is further extended to solve NEPs in the boundary element method, which is typically difficult due to the densely populated matrices and high computational costs. The good performance of RSRR is demonstrated by a variety of benchmark examples and large-scale practical applications, with the degrees of freedom ranging from several hundred up to around one million. The algorithm is suitable for parallelization and easy to implement in conjunction with other programs and software.
AbstractList A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and reliability of the solution, which is a challenging task in computational science and engineering. The proposed algorithm utilizes the Rayleigh–Ritz procedure to compute all eigenvalues and the corresponding eigenvectors lying within a given contour in the complex plane. The main novelties are the following. First and foremost, the approximate eigenspace is constructed by using the values of the resolvent at a series of sampling points on the contour, which effectively circumvents the unreliability of previous schemes that using high-order contour moments of the resolvent. Secondly, an improved Sakurai–Sugiura algorithm is proposed to solve the projected NEPs with enhancements on reliability and accuracy. The user-defined probing matrix in the original algorithm is avoided and the number of eigenvalues is determined automatically by the provided strategies. Finally, by approximating the projected matrices with the Chebyshev interpolation technique, RSRR is further extended to solve NEPs in the boundary element method, which is typically difficult due to the densely populated matrices and high computational costs. The good performance of RSRR is demonstrated by a variety of benchmark examples and large-scale practical applications, with the degrees of freedom ranging from several hundred up to around one million. The algorithm is suitable for parallelization and easy to implement in conjunction with other programs and software.
Author Zhang, Chuanzeng
Xiao, Jinyou
Zheng, Changjun
Meng, Shuangshuang
Author_xml – sequence: 1
  givenname: Jinyou
  surname: Xiao
  fullname: Xiao, Jinyou
  email: xiaojy@nwpu.edu.cn
  organization: School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 2
  givenname: Shuangshuang
  surname: Meng
  fullname: Meng, Shuangshuang
  organization: School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
– sequence: 3
  givenname: Chuanzeng
  surname: Zhang
  fullname: Zhang, Chuanzeng
  email: c.zhang@uni-siegen.de
  organization: Department of Civil Engineering, University of Siegen, D-57068 Siegen, Germany
– sequence: 4
  givenname: Changjun
  surname: Zheng
  fullname: Zheng, Changjun
  email: cjzheng@hfut.edu.cn
  organization: Institute of Sound and Vibration Research, Hefei University of Technology, Hefei, 230009, China
BookMark eNp9kM1KAzEQx4NUsK0-gLe8wNYk-5EsnqT4BQWh6FFCNpltU7KbkqyFevIdfEOfxJR68tDhDzMM8xtm_hM06n0PCF1TMqOEVjebme7UjKVyRpKoOENjKnidMZqLERoTUpQZF6y8QJMYNySFoGyM3pcQvdtBP-Couq2z_Qo3KoLBS7V3YFfrn6_vpR0-cQfD2hvc-oCdCivIolYOcLojQaACTsPQ75T7ALwNvnHQxUt03ioX4eovT9Hbw_3r_ClbvDw-z-8Wmc4LMmRVy3LgbVVpw1ldFo2BmvOq1sawGkjDUyOvmspQpllbEK5NbsqCi4IowXmeTxE_7tXBxxigldoOarC-H4KyTlIiDy7JjUwuyYNLkiRRkUj6j9wG26mwP8ncHhlIL-0sBBm1hV6DsQH0II23J-hflBaEyQ
CitedBy_id crossref_primary_10_1016_j_cma_2019_112755
crossref_primary_10_1002_nme_6205
crossref_primary_10_1007_s00791_018_00302_w
crossref_primary_10_1051_jnwpu_20193710028
crossref_primary_10_1002_nme_6701
crossref_primary_10_1016_j_ymssp_2017_05_018
crossref_primary_10_1016_j_enganabound_2025_106162
crossref_primary_10_1016_j_jcp_2018_01_018
crossref_primary_10_1007_s00466_016_1353_4
crossref_primary_10_1016_j_enganabound_2018_05_005
crossref_primary_10_1016_j_enganabound_2024_105828
crossref_primary_10_1016_j_cma_2018_09_038
crossref_primary_10_1016_j_cma_2020_113532
crossref_primary_10_1016_j_compstruc_2021_106571
crossref_primary_10_1002_nme_5441
crossref_primary_10_1016_j_compstruc_2024_107456
crossref_primary_10_1016_j_ymssp_2023_110982
crossref_primary_10_3390_app9081642
crossref_primary_10_1002_nme_5351
crossref_primary_10_1002_nme_7453
Cites_doi 10.1137/120885644
10.1002/gamm.201490007
10.1016/j.laa.2005.03.034
10.1016/0045-7949(95)00012-6
10.1016/j.enganabound.2013.03.015
10.1016/j.future.2003.07.003
10.1016/0045-7825(89)90078-9
10.1016/j.enganabound.2012.09.007
10.1016/j.compstruc.2013.11.009
10.1016/j.laa.2009.03.024
10.1137/0722055
10.1016/S0045-7949(00)00151-6
10.1016/j.cma.2014.09.037
10.1016/S0045-7825(00)00187-0
10.1002/nme.1620360210
10.1016/j.compstruc.2006.08.088
10.1007/s00211-009-0259-x
10.1137/S0036144500381988
10.1016/j.enganabound.2015.04.014
10.1145/2427023.2427024
10.1016/j.laa.2011.03.030
10.1016/0965-9978(95)00125-5
10.1137/140976698
10.1137/100801986
10.1002/pamm.201210305
10.1137/050628362
10.1137/130935045
10.1016/j.enganabound.2014.07.006
10.1137/13093755x
10.1023/B:BITN.0000039424.56697.8b
10.1016/j.cma.2006.01.006
10.1007/s10543-012-0381-5
10.1137/120877556
10.1016/S0377-0427(03)00565-X
10.1016/j.jsv.2009.04.008
10.1103/PhysRevB.79.115112
10.1016/j.cma.2009.09.015
10.1002/nla.1913
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cma.2016.06.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 57
ExternalDocumentID 10_1016_j_cma_2016_06_018
S0045782516305904
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c340t-6f23e7f66cd72954bde97769cdd29e0b7bde36b6d12c2f407cd3d547840a87733
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384859400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sat Nov 29 07:28:15 EST 2025
Tue Nov 18 21:16:45 EST 2025
Fri Feb 23 02:24:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Rayleigh–Ritz procedure
Nonlinear eigenvalue problems
Boundary element method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-6f23e7f66cd72954bde97769cdd29e0b7bde36b6d12c2f407cd3d547840a87733
OpenAccessLink https://doi.org/10.1016/j.cma.2016.06.018
PageCount 25
ParticipantIDs crossref_citationtrail_10_1016_j_cma_2016_06_018
crossref_primary_10_1016_j_cma_2016_06_018
elsevier_sciencedirect_doi_10_1016_j_cma_2016_06_018
PublicationCentury 2000
PublicationDate 2016-10-01
2016-10-00
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References van Opstal, van Brummelen, van Zwieten (br000025) 2015; 284
Ali, Rajakumar, Yunus (br000070) 1995; 56
Sakurai, Sugiura (br000165) 2003; 159
Kressner (br000110) 2009; 114
Steinbach, Unger (br000075) 2012; 50
Li, Hu, Wang (br000225) 2014; 133
Bilasse, Charpentier, Koutsawa (br000205) 2009; 198
Solovëv (br000050) 2006; 415
Voss (br000105) 2007; 85
Neumaier (br000125) 1985; 22
Effenberger, Kressner, Steinbach, Unger (br000090) 2012; 12
Kimeswenger, Steinbach, Unger (br000030) 2014; 52
Kressner, Roman (br000140) 2014; 21
Daya, Potier-Ferry (br000035) 2001; 79
Adhikari, Pascual (br000045) 2009; 325
Mehrmann, Voss (br000095) 2004; 27
Van~Beeumen, Meerbergen, Michiels (br000120) 2013; 35
Güttel, Van~Beeumen, Meerbergen, Michiels (br000145) 2014; 36
Cao, Wen, Xiao, Liu (br000160) 2015; 50
Conca, Planchard, Vanninathan (br000055) 1989; 77
Effenberger (br000015) 2013
Polizzi (br000170) 2009; 79
Sakurai, Tadano (br000195) 2007; 36
Kamiya, Andoh, Nogae (br000135) 1996; 26
Van~Beeumen, Meerbergen, Michiels (br000150) 2015; 36
Van~Beeumen (br000020) 2015
Effenberger, Kressner (br000080) 2012; 52
Mackey, Mackey, Mehl, Mehrmann (br000155) 2006; 28
Effenberger (br000085) 2013; 34
Voss (br000100) 2004; 44
Mehrmann, Schröder (br000010) 2011; 1
Botchev, Sleijpen, Sopaheluwakan (br000060) 2009; 431
Feriani, Perotti, Simoncini (br000220) 2000; 190
Beyn (br000115) 2012; 436
Tisseur, Meerbergen (br000005) 2001; 43
Kirkup, Amini (br000065) 1993; 36
Yokota, Sakurai (br000200) 2013; 5
Betcke, Higham, Mehrmann, Schröder, Tisseur (br000215) 2013; 39
Leblanc, Lavie (br000185) 2013; 37
Cortés, Elejabarrieta (br000040) 2006; 195
Gao, Matsumoto, Takahashi, Isakari (br000180) 2013; 37
Zheng, Chen, Gao, Du (br000190) 2015; 59
Asakura, Sakurai, Tadano, Ikegami, Kimura (br000210) 2009; 1
Sakurai, Asakura, Tadano, Ikegami (br000175) 2009; 1
Betcke, Voss (br000130) 2004; 20
Kimeswenger (10.1016/j.cma.2016.06.018_br000030) 2014; 52
Botchev (10.1016/j.cma.2016.06.018_br000060) 2009; 431
Solovëv (10.1016/j.cma.2016.06.018_br000050) 2006; 415
Van~Beeumen (10.1016/j.cma.2016.06.018_br000150) 2015; 36
Yokota (10.1016/j.cma.2016.06.018_br000200) 2013; 5
Feriani (10.1016/j.cma.2016.06.018_br000220) 2000; 190
Beyn (10.1016/j.cma.2016.06.018_br000115) 2012; 436
Asakura (10.1016/j.cma.2016.06.018_br000210) 2009; 1
Ali (10.1016/j.cma.2016.06.018_br000070) 1995; 56
Kirkup (10.1016/j.cma.2016.06.018_br000065) 1993; 36
Cao (10.1016/j.cma.2016.06.018_br000160) 2015; 50
Mehrmann (10.1016/j.cma.2016.06.018_br000095) 2004; 27
Polizzi (10.1016/j.cma.2016.06.018_br000170) 2009; 79
Sakurai (10.1016/j.cma.2016.06.018_br000195) 2007; 36
Daya (10.1016/j.cma.2016.06.018_br000035) 2001; 79
Effenberger (10.1016/j.cma.2016.06.018_br000015) 2013
Van~Beeumen (10.1016/j.cma.2016.06.018_br000020) 2015
Effenberger (10.1016/j.cma.2016.06.018_br000085) 2013; 34
Betcke (10.1016/j.cma.2016.06.018_br000130) 2004; 20
Van~Beeumen (10.1016/j.cma.2016.06.018_br000120) 2013; 35
Voss (10.1016/j.cma.2016.06.018_br000100) 2004; 44
Effenberger (10.1016/j.cma.2016.06.018_br000090) 2012; 12
Sakurai (10.1016/j.cma.2016.06.018_br000175) 2009; 1
Neumaier (10.1016/j.cma.2016.06.018_br000125) 1985; 22
Mehrmann (10.1016/j.cma.2016.06.018_br000010) 2011; 1
Zheng (10.1016/j.cma.2016.06.018_br000190) 2015; 59
Steinbach (10.1016/j.cma.2016.06.018_br000075) 2012; 50
Gao (10.1016/j.cma.2016.06.018_br000180) 2013; 37
Güttel (10.1016/j.cma.2016.06.018_br000145) 2014; 36
Betcke (10.1016/j.cma.2016.06.018_br000215) 2013; 39
Cortés (10.1016/j.cma.2016.06.018_br000040) 2006; 195
Voss (10.1016/j.cma.2016.06.018_br000105) 2007; 85
Tisseur (10.1016/j.cma.2016.06.018_br000005) 2001; 43
Kressner (10.1016/j.cma.2016.06.018_br000110) 2009; 114
Bilasse (10.1016/j.cma.2016.06.018_br000205) 2009; 198
van Opstal (10.1016/j.cma.2016.06.018_br000025) 2015; 284
Conca (10.1016/j.cma.2016.06.018_br000055) 1989; 77
Adhikari (10.1016/j.cma.2016.06.018_br000045) 2009; 325
Sakurai (10.1016/j.cma.2016.06.018_br000165) 2003; 159
Mackey (10.1016/j.cma.2016.06.018_br000155) 2006; 28
Effenberger (10.1016/j.cma.2016.06.018_br000080) 2012; 52
Li (10.1016/j.cma.2016.06.018_br000225) 2014; 133
Leblanc (10.1016/j.cma.2016.06.018_br000185) 2013; 37
Kressner (10.1016/j.cma.2016.06.018_br000140) 2014; 21
Kamiya (10.1016/j.cma.2016.06.018_br000135) 1996; 26
References_xml – volume: 77
  start-page: 253
  year: 1989
  end-page: 291
  ident: br000055
  article-title: Existence and location of eigenvalues for fluid-solid structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 52
  start-page: 933
  year: 2012
  end-page: 951
  ident: br000080
  article-title: Chebyshev interpolation for nonlinear eigenvalue problems
  publication-title: BIT
– volume: 26
  start-page: 219
  year: 1996
  end-page: 227
  ident: br000135
  article-title: A new complex-valued formulation and eigenvalue analysis of the Helmholtz equation by boundary element method
  publication-title: Adv. Eng. Softw.
– volume: 50
  start-page: 47
  year: 2015
  end-page: 58
  ident: br000160
  article-title: A fast directional BEM for large-scale acoustic problems based on the Burton–Miller formulation
  publication-title: Eng. Anal. Bound. Elem.
– volume: 159
  start-page: 119
  year: 2003
  end-page: 128
  ident: br000165
  article-title: A projection method for generalized eigenvalue problems using numerical integration
  publication-title: J. Comput. Appl. Math.
– volume: 36
  start-page: A2842
  year: 2014
  end-page: A2864
  ident: br000145
  article-title: NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems
  publication-title: SIAM J. Sci. Comput.
– volume: 79
  year: 2009
  ident: br000170
  article-title: Density-matrix-based algorithm for solving eigenvalue problems
  publication-title: Phys. Rev. B
– volume: 37
  start-page: 914
  year: 2013
  end-page: 923
  ident: br000180
  article-title: Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method
  publication-title: Eng. Anal. Bound. Elem.
– volume: 190
  start-page: 1719
  year: 2000
  end-page: 1739
  ident: br000220
  article-title: Iterative system solvers for the frequency analysis of linear mechanical systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 21
  start-page: 569
  year: 2014
  end-page: 588
  ident: br000140
  article-title: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis
  publication-title: Numer. Linear Algebra Appl.
– volume: 114
  start-page: 355
  year: 2009
  end-page: 372
  ident: br000110
  article-title: A block Newton method for nonlinear eigenvalue problems
  publication-title: Numer. Math.
– volume: 436
  start-page: 3839
  year: 2012
  end-page: 3863
  ident: br000115
  article-title: An integral method for solving nonlinear eigenvalue problems
  publication-title: Linear Algebra Appl.
– volume: 1
  start-page: 76
  year: 2009
  end-page: 79
  ident: br000175
  article-title: Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments
  publication-title: J. SIAM Lett.
– volume: 284
  start-page: 637
  year: 2015
  end-page: 663
  ident: br000025
  article-title: A finite-element/boundary-element method for three-dimensional, large-displacement fluid–structure-interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 36
  start-page: 820
  year: 2015
  end-page: 838
  ident: br000150
  article-title: Compact rational Krylov methods for nonlinear eigenvalue problems
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 133
  start-page: 39
  year: 2014
  end-page: 50
  ident: br000225
  article-title: Harmonic response calculation of viscoelastic structures using classical normal modes: An iterative method
  publication-title: Comput. Struct.
– volume: 198
  start-page: 3999
  year: 2009
  end-page: 4004
  ident: br000205
  article-title: A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 37
  start-page: 162
  year: 2013
  end-page: 166
  ident: br000185
  article-title: Solving acoustic nonlinear eigenvalue problems with a contour integral method
  publication-title: Engineering Analysis with Boundary Elements
– volume: 22
  start-page: 914
  year: 1985
  end-page: 923
  ident: br000125
  article-title: Residual inverse iteration for the nonlinear eigenvalue problem
  publication-title: SIAM J. Numer. Anal.
– volume: 52
  start-page: 2400
  year: 2014
  end-page: 2414
  ident: br000030
  article-title: Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems
  publication-title: SIAM J. Numer. Anal.
– volume: 12
  start-page: 633
  year: 2012
  end-page: 634
  ident: br000090
  article-title: Interpolation-based solution of a nonlinear eigenvalue problem in fluid–structure interaction
  publication-title: PAMM
– volume: 36
  start-page: 745
  year: 2007
  end-page: 757
  ident: br000195
  article-title: CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems
  publication-title: Hokkaido Mathe. J.
– volume: 28
  start-page: 1029
  year: 2006
  end-page: 1051
  ident: br000155
  article-title: Structured polynomial eigenvalue problems: Good vibrations from good linearizations
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 43
  start-page: 235
  year: 2001
  end-page: 286
  ident: br000005
  article-title: The quadratic eigenvalue problem
  publication-title: SIAM Rev,
– year: 2015
  ident: br000020
  article-title: Rational Krylov methods for nonlinear eigenvalue problems
– volume: 34
  start-page: 1231
  year: 2013
  end-page: 1256
  ident: br000085
  article-title: Robust successive computation of eigenpairs for nonlinear eigenvalue problems
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 59
  start-page: 43
  year: 2015
  end-page: 51
  ident: br000190
  article-title: Is the Burton–Miller formulation really free of fictitious eigenfrequencies?
  publication-title: Engineering Analysis with Boundary Elements
– year: 2013
  ident: br000015
  article-title: Robust solution methods for nonlinear eigenvalue problems
– volume: 5
  start-page: 41
  year: 2013
  end-page: 44
  ident: br000200
  article-title: A projection method for nonlinear eigenvalue problems using contour integrals
  publication-title: J. SIAM Lett.
– volume: 36
  start-page: 321
  year: 1993
  end-page: 330
  ident: br000065
  article-title: Solution of the Helmholtz eigenvalue problem via the boundary element method
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 50
  start-page: 710
  year: 2012
  end-page: 728
  ident: br000075
  article-title: Convergence analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem
  publication-title: SIAM J. Numer. Anal.
– volume: 195
  start-page: 6448
  year: 2006
  end-page: 6462
  ident: br000040
  article-title: Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 85
  start-page: 1284
  year: 2007
  end-page: 1292
  ident: br000105
  article-title: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems
  publication-title: Comput. Struct.
– volume: 1
  start-page: 52
  year: 2009
  end-page: 55
  ident: br000210
  article-title: A numerical method for nonlinear eigenvalue problems using contour integrals
  publication-title: J. SIAM Lett.
– volume: 35
  start-page: A327
  year: 2013
  end-page: A350
  ident: br000120
  article-title: A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems
  publication-title: SIAM J. Sci. Comput.
– volume: 1
  start-page: 1
  year: 2011
  end-page: 18
  ident: br000010
  article-title: Nonlinear eigenvalue and frequency response problems in industrial practice
  publication-title: J. Math. Ind.
– volume: 20
  start-page: 363
  year: 2004
  end-page: 372
  ident: br000130
  article-title: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems
  publication-title: Future Gener. Comput. Syst.
– volume: 27
  start-page: 121
  year: 2004
  end-page: 152
  ident: br000095
  article-title: Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods
  publication-title: GAMM-Mitt.
– volume: 56
  start-page: 837
  year: 1995
  end-page: 847
  ident: br000070
  article-title: Advances in acoustic eigenvalue analysis using boundary element method
  publication-title: Comput. Struct.
– volume: 431
  start-page: 427
  year: 2009
  end-page: 440
  ident: br000060
  article-title: An SVD-approach to Jacobi–Davidson solution of nonlinear Helmholtz eigenvalue problems
  publication-title: Linear Algebra Appl.
– volume: 44
  start-page: 387
  year: 2004
  end-page: 401
  ident: br000100
  article-title: An Arnoldi method for nonlinear eigenvalue problems
  publication-title: BIT
– volume: 325
  start-page: 1000
  year: 2009
  end-page: 1011
  ident: br000045
  article-title: Eigenvalues of linear viscoelastic systems
  publication-title: J. Sound Vib.
– volume: 415
  start-page: 210
  year: 2006
  end-page: 229
  ident: br000050
  article-title: Preconditioned iterative methods for a class of nonlinear eigenvalue problems
  publication-title: Linear Algebra Appl.
– volume: 39
  start-page: 7
  year: 2013
  ident: br000215
  article-title: NLEVP: A collection of nonlinear eigenvalue problems
  publication-title: ACM Trans. Math. Software
– volume: 79
  start-page: 533
  year: 2001
  end-page: 541
  ident: br000035
  article-title: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures
  publication-title: Comput. Struct.
– volume: 34
  start-page: 1231
  issue: 3
  year: 2013
  ident: 10.1016/j.cma.2016.06.018_br000085
  article-title: Robust successive computation of eigenpairs for nonlinear eigenvalue problems
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120885644
– volume: 27
  start-page: 121
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2016.06.018_br000095
  article-title: Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.201490007
– volume: 415
  start-page: 210
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2016.06.018_br000050
  article-title: Preconditioned iterative methods for a class of nonlinear eigenvalue problems
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2005.03.034
– volume: 56
  start-page: 837
  issue: 5
  year: 1995
  ident: 10.1016/j.cma.2016.06.018_br000070
  article-title: Advances in acoustic eigenvalue analysis using boundary element method
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(95)00012-6
– volume: 37
  start-page: 914
  issue: 6
  year: 2013
  ident: 10.1016/j.cma.2016.06.018_br000180
  article-title: Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2013.03.015
– volume: 20
  start-page: 363
  issue: 3
  year: 2004
  ident: 10.1016/j.cma.2016.06.018_br000130
  article-title: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2003.07.003
– volume: 77
  start-page: 253
  issue: 3
  year: 1989
  ident: 10.1016/j.cma.2016.06.018_br000055
  article-title: Existence and location of eigenvalues for fluid-solid structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(89)90078-9
– year: 2015
  ident: 10.1016/j.cma.2016.06.018_br000020
– volume: 37
  start-page: 162
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2016.06.018_br000185
  article-title: Solving acoustic nonlinear eigenvalue problems with a contour integral method
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/j.enganabound.2012.09.007
– volume: 133
  start-page: 39
  year: 2014
  ident: 10.1016/j.cma.2016.06.018_br000225
  article-title: Harmonic response calculation of viscoelastic structures using classical normal modes: An iterative method
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.11.009
– volume: 431
  start-page: 427
  issue: 3
  year: 2009
  ident: 10.1016/j.cma.2016.06.018_br000060
  article-title: An SVD-approach to Jacobi–Davidson solution of nonlinear Helmholtz eigenvalue problems
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.03.024
– volume: 22
  start-page: 914
  issue: 5
  year: 1985
  ident: 10.1016/j.cma.2016.06.018_br000125
  article-title: Residual inverse iteration for the nonlinear eigenvalue problem
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0722055
– volume: 79
  start-page: 533
  issue: 5
  year: 2001
  ident: 10.1016/j.cma.2016.06.018_br000035
  article-title: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(00)00151-6
– volume: 1
  start-page: 52
  issue: 0
  year: 2009
  ident: 10.1016/j.cma.2016.06.018_br000210
  article-title: A numerical method for nonlinear eigenvalue problems using contour integrals
  publication-title: J. SIAM Lett.
– volume: 284
  start-page: 637
  year: 2015
  ident: 10.1016/j.cma.2016.06.018_br000025
  article-title: A finite-element/boundary-element method for three-dimensional, large-displacement fluid–structure-interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.09.037
– volume: 190
  start-page: 1719
  issue: 13
  year: 2000
  ident: 10.1016/j.cma.2016.06.018_br000220
  article-title: Iterative system solvers for the frequency analysis of linear mechanical systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(00)00187-0
– year: 2013
  ident: 10.1016/j.cma.2016.06.018_br000015
– volume: 36
  start-page: 321
  issue: 2
  year: 1993
  ident: 10.1016/j.cma.2016.06.018_br000065
  article-title: Solution of the Helmholtz eigenvalue problem via the boundary element method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620360210
– volume: 85
  start-page: 1284
  issue: 17
  year: 2007
  ident: 10.1016/j.cma.2016.06.018_br000105
  article-title: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.08.088
– volume: 36
  start-page: 745
  issue: 4
  year: 2007
  ident: 10.1016/j.cma.2016.06.018_br000195
  article-title: CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems
  publication-title: Hokkaido Mathe. J.
– volume: 1
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.cma.2016.06.018_br000010
  article-title: Nonlinear eigenvalue and frequency response problems in industrial practice
  publication-title: J. Math. Ind.
– volume: 114
  start-page: 355
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2016.06.018_br000110
  article-title: A block Newton method for nonlinear eigenvalue problems
  publication-title: Numer. Math.
  doi: 10.1007/s00211-009-0259-x
– volume: 5
  start-page: 41
  issue: 0
  year: 2013
  ident: 10.1016/j.cma.2016.06.018_br000200
  article-title: A projection method for nonlinear eigenvalue problems using contour integrals
  publication-title: J. SIAM Lett.
– volume: 1
  start-page: 76
  issue: 0
  year: 2009
  ident: 10.1016/j.cma.2016.06.018_br000175
  article-title: Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments
  publication-title: J. SIAM Lett.
– volume: 43
  start-page: 235
  issue: 2
  year: 2001
  ident: 10.1016/j.cma.2016.06.018_br000005
  article-title: The quadratic eigenvalue problem
  publication-title: SIAM Rev,
  doi: 10.1137/S0036144500381988
– volume: 59
  start-page: 43
  year: 2015
  ident: 10.1016/j.cma.2016.06.018_br000190
  article-title: Is the Burton–Miller formulation really free of fictitious eigenfrequencies?
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/j.enganabound.2015.04.014
– volume: 39
  start-page: 7
  issue: 2
  year: 2013
  ident: 10.1016/j.cma.2016.06.018_br000215
  article-title: NLEVP: A collection of nonlinear eigenvalue problems
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/2427023.2427024
– volume: 436
  start-page: 3839
  issue: 10
  year: 2012
  ident: 10.1016/j.cma.2016.06.018_br000115
  article-title: An integral method for solving nonlinear eigenvalue problems
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2011.03.030
– volume: 26
  start-page: 219
  issue: 3
  year: 1996
  ident: 10.1016/j.cma.2016.06.018_br000135
  article-title: A new complex-valued formulation and eigenvalue analysis of the Helmholtz equation by boundary element method
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/0965-9978(95)00125-5
– volume: 36
  start-page: 820
  issue: 2
  year: 2015
  ident: 10.1016/j.cma.2016.06.018_br000150
  article-title: Compact rational Krylov methods for nonlinear eigenvalue problems
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140976698
– volume: 50
  start-page: 710
  issue: 2
  year: 2012
  ident: 10.1016/j.cma.2016.06.018_br000075
  article-title: Convergence analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100801986
– volume: 12
  start-page: 633
  issue: 1
  year: 2012
  ident: 10.1016/j.cma.2016.06.018_br000090
  article-title: Interpolation-based solution of a nonlinear eigenvalue problem in fluid–structure interaction
  publication-title: PAMM
  doi: 10.1002/pamm.201210305
– volume: 28
  start-page: 1029
  issue: 4
  year: 2006
  ident: 10.1016/j.cma.2016.06.018_br000155
  article-title: Structured polynomial eigenvalue problems: Good vibrations from good linearizations
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/050628362
– volume: 36
  start-page: A2842
  issue: 6
  year: 2014
  ident: 10.1016/j.cma.2016.06.018_br000145
  article-title: NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130935045
– volume: 50
  start-page: 47
  year: 2015
  ident: 10.1016/j.cma.2016.06.018_br000160
  article-title: A fast directional BEM for large-scale acoustic problems based on the Burton–Miller formulation
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2014.07.006
– volume: 52
  start-page: 2400
  issue: 5
  year: 2014
  ident: 10.1016/j.cma.2016.06.018_br000030
  article-title: Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/13093755x
– volume: 44
  start-page: 387
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2016.06.018_br000100
  article-title: An Arnoldi method for nonlinear eigenvalue problems
  publication-title: BIT
  doi: 10.1023/B:BITN.0000039424.56697.8b
– volume: 195
  start-page: 6448
  issue: 44
  year: 2006
  ident: 10.1016/j.cma.2016.06.018_br000040
  article-title: Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2006.01.006
– volume: 52
  start-page: 933
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2016.06.018_br000080
  article-title: Chebyshev interpolation for nonlinear eigenvalue problems
  publication-title: BIT
  doi: 10.1007/s10543-012-0381-5
– volume: 35
  start-page: A327
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2016.06.018_br000120
  article-title: A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120877556
– volume: 159
  start-page: 119
  issue: 1
  year: 2003
  ident: 10.1016/j.cma.2016.06.018_br000165
  article-title: A projection method for generalized eigenvalue problems using numerical integration
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(03)00565-X
– volume: 325
  start-page: 1000
  issue: 4
  year: 2009
  ident: 10.1016/j.cma.2016.06.018_br000045
  article-title: Eigenvalues of linear viscoelastic systems
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.04.008
– volume: 79
  issue: 11
  year: 2009
  ident: 10.1016/j.cma.2016.06.018_br000170
  article-title: Density-matrix-based algorithm for solving eigenvalue problems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.115112
– volume: 198
  start-page: 3999
  issue: 49
  year: 2009
  ident: 10.1016/j.cma.2016.06.018_br000205
  article-title: A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.09.015
– volume: 21
  start-page: 569
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2016.06.018_br000140
  article-title: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1913
SSID ssj0000812
Score 2.3406923
Snippet A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Boundary element method
Finite element method
Nonlinear eigenvalue problems
Rayleigh–Ritz procedure
Title Resolvent sampling based Rayleigh–Ritz method for large-scale nonlinear eigenvalue problems
URI https://dx.doi.org/10.1016/j.cma.2016.06.018
Volume 310
WOSCitedRecordID wos000384859400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGKQtY8CggyktesCIKSuLETpZVVQQsKlQVaTYo8itlRtNQTWaqtqv-A7_BV_ElXL8yoaWILthYIydxZuYeXV9fH5-L0GuhKiZ4lcRcK1igyKyIOc10nKUkVeAzVUqVLTbB9vbKyaT6NBr9CGdhTuasbcvT0-r4v5oa-sDY5ujsDczdDwod8BmMDi2YHdp_MrxJyM8NizHquKGLt4eRmapUtA-Lc5MIDfwGsj9dnvsS0pZtODes8LgDq-modRIafBFpo9dpNMHNkSpbfaYbRrShLIQfyNJruQ9tj7Q5Vxx0oPVa-jCYeTLlbudn2p59W_XG1z6H_XXF28POtlcS3Dum-1wPr-hwBW6ZrdphQiOlPTWud9J5EUPgUgydNPHkV-dmnXaGn7CdwPWVqcBlJWZvpZWXSqmVafW-_jfZ7UvTYU9SDPy3WQ1D1GaI2nAA0_IW2shYUZVjtLH9YXfycT3zl6lTp_c_IOyiWz7hpe_x5zhoENscPED3_KIEbzswPUQj3W6i-36Bgr377zbR3YF65SP0pUcaDkjDFmk4IO3nxXeDMeyggQFjeIAx3GMMrzGGA8Yeo8_vdg923se-WkcsSZ4sY9pkRLOGUqmY2TwWSsPaglZSqazSiWDQQaigKs1k1uQJk4oooyaXJ7xkjJAnaAzv1U8RLkqIokXOK81Z3jRCNGkiG06ForIqCraFkvDf1dJL2ZuKKvP6WpttoTf9I8dOx-VvN-fBILUPRF2AWQO4rn_s2U3e8RzdWYP_BRovFyv9Et2WJ8tpt3jlkfULW-Sufg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolvent+sampling+based+Rayleigh%E2%80%93Ritz+method+for+large-scale+nonlinear+eigenvalue+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Xiao%2C+Jinyou&rft.au=Meng%2C+Shuangshuang&rft.au=Zhang%2C+Chuanzeng&rft.au=Zheng%2C+Changjun&rft.date=2016-10-01&rft.issn=0045-7825&rft.volume=310&rft.spage=33&rft.epage=57&rft_id=info:doi/10.1016%2Fj.cma.2016.06.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2016_06_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon