Hurwitz rational functions

A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational functions and introduce a new type of determinants that can be treated as a generalization of the Hurwitz determinants.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 435; H. 8; S. 1845 - 1856
Hauptverfasser: Barkovsky, Yury, Tyaglov, Mikhail
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.10.2011
Schlagworte:
ISSN:0024-3795
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational functions and introduce a new type of determinants that can be treated as a generalization of the Hurwitz determinants.
AbstractList A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational functions and introduce a new type of determinants that can be treated as a generalization of the Hurwitz determinants.
Author Tyaglov, Mikhail
Barkovsky, Yury
Author_xml – sequence: 1
  givenname: Yury
  surname: Barkovsky
  fullname: Barkovsky, Yury
  organization: Department of Calculus Mathematics and Mathematical Physics, Faculty of Mathematics, Mechanics & Computer Science, Southern Federal University, Milchakova str. 8a, 344090 Rostov-on-Don, Russia
– sequence: 2
  givenname: Mikhail
  surname: Tyaglov
  fullname: Tyaglov, Mikhail
  email: tyaglov@math.tu-berlin.de
  organization: Technische Universität Berlin, Institut für Mathematik, MA 4-5, Strasse des 17. Juni 136, 10623 Berlin, Germany
BookMark eNp9z7FOwzAQgGEPRaItPABMfYGEOzu1iZhQBRSpEgvMlns-S45CguwUBE9PSjsxdLpb_tN9MzHp-o6FuEIoEVDfNGXrXCkBsQRVgpYTMQWQVaFMvTwXs5wbAKgMyKm4Xu_SVxx-FskNse9cuwi7jvZrvhBnwbWZL49zLt4eH15X62Lz8vS8ut8UpCoYCs3eMAbDpD2qWlONPtx6p0CiI-mM1hRkhVAHDUu9JTK81YaDqivFJqi5MIe7lPqcEwdLcfj7ZkguthbB7lm2sSPL7lkWlB1ZY4n_yo8U3136PtncHRoeSZ-Rk80UuSP2MTEN1vfxRP0L2G5pBA
CitedBy_id crossref_primary_10_1007_s40315_016_0160_4
crossref_primary_10_33693_2313_223X_2024_11_3_52_56
Cites_doi 10.1007/BF01446812
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright_xml – notice: 2011 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.laa.2011.03.062
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 1856
ExternalDocumentID 10_1016_j_laa_2011_03_062
S0024379511002989
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXKI
AAXUO
ABAOU
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AETEA
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c340t-6ed7e1f7ec6d1396c91df8da3021ac2a766cf24109f6056bcc7eb67ef3943e7f3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292439500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Sat Nov 29 05:08:56 EST 2025
Tue Nov 18 22:20:21 EST 2025
Tue Dec 03 03:44:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Pole localization
Hurwitz stable polynomials
Root localization
26C10
Hurwitz rational function
Hurwitz matrix
15B05
26C15
15A15
26C05
30C15
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-6ed7e1f7ec6d1396c91df8da3021ac2a766cf24109f6056bcc7eb67ef3943e7f3
OpenAccessLink https://dx.doi.org/10.1016/j.laa.2011.03.062
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_laa_2011_03_062
crossref_primary_10_1016_j_laa_2011_03_062
elsevier_sciencedirect_doi_10_1016_j_laa_2011_03_062
PublicationCentury 2000
PublicationDate 2011-10-15
PublicationDateYYYYMMDD 2011-10-15
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Linear algebra and its applications
PublicationYear 2011
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References O. Holtz, M. Tyaglov, Structured matrices, continued fractions and root localization of polynomials, SIAM Review 2009, accepted for publication. Available from: arXiv:0912.470.
Yu.S. Barkovskiy, Lectures on the Routh–Hurwitz Problem, 2008, in press. Available from
Hurwitz (b0020) 1895; 46
Gantmacher (b0010) 2000; vol. II
1936 (in Russian). English transl. M.G. Krein, M.A. Naimark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra 10 (4) (1981) 265–308. Translated from the Russian by O. Boshko and J.L. Howland.
M. Tyaglov, Generalized Hurwitz polynomials, 2010, submitted for publication. Available from: arXiv:1005.3032.
.
Frobenius (10.1016/j.laa.2011.03.062_fs010) 1894
Gantmacher (10.1016/j.laa.2011.03.062_b0010) 2000; vol. II
10.1016/j.laa.2011.03.062_b0030
Hurwitz (10.1016/j.laa.2011.03.062_b0020) 1895; 46
10.1016/j.laa.2011.03.062_b0005
10.1016/j.laa.2011.03.062_b0015
10.1016/j.laa.2011.03.062_b0025
References_xml – reference: M. Tyaglov, Generalized Hurwitz polynomials, 2010, submitted for publication. Available from: arXiv:1005.3032.
– reference: O. Holtz, M. Tyaglov, Structured matrices, continued fractions and root localization of polynomials, SIAM Review 2009, accepted for publication. Available from: arXiv:0912.470.
– reference: Yu.S. Barkovskiy, Lectures on the Routh–Hurwitz Problem, 2008, in press. Available from:
– volume: vol. II
  year: 2000
  ident: b0010
  publication-title: The Theory of Matrices
– volume: 46
  start-page: 273
  year: 1895
  end-page: 284
  ident: b0020
  article-title: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt
  publication-title: Math. Ann.
– reference: ▪ ▪, 1936 (in Russian). English transl. M.G. Krein, M.A. Naimark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra 10 (4) (1981) 265–308. Translated from the Russian by O. Boshko and J.L. Howland.
– reference: .
– start-page: 241
  year: 1894
  ident: 10.1016/j.laa.2011.03.062_fs010
  article-title: Über das Trägheitsgesetz der quadratischen Formen
  publication-title: Sitzungsber. Ber. Acad. Wiss. Phys. Math. Klasse Berlin
– ident: 10.1016/j.laa.2011.03.062_b0025
– ident: 10.1016/j.laa.2011.03.062_b0005
– ident: 10.1016/j.laa.2011.03.062_b0030
– volume: vol. II
  year: 2000
  ident: 10.1016/j.laa.2011.03.062_b0010
– ident: 10.1016/j.laa.2011.03.062_b0015
– volume: 46
  start-page: 273
  year: 1895
  ident: 10.1016/j.laa.2011.03.062_b0020
  article-title: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt
  publication-title: Math. Ann.
  doi: 10.1007/BF01446812
SSID ssj0004702
Score 1.9490016
Snippet A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1845
SubjectTerms Hurwitz matrix
Hurwitz rational function
Hurwitz stable polynomials
Pole localization
Root localization
Title Hurwitz rational functions
URI https://dx.doi.org/10.1016/j.laa.2011.03.062
Volume 435
WOSCitedRecordID wos000292439500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004702
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA66-aAP4hXv7MEnpdJr0j4OUVRQBCfMp5Lmom6jG93F6a_3ZE3aKVNU8KWU0vSSL5x85-TkOwgdSuk6nHBsOVQklp_4tpW44LgGoYxCJhmxOZ0UmyA3N2GzGd3qWvL9STkBkqbheBz1_hVquAZgq62zv4C7eChcgHMAHY4AOxx_BPzFMHt5HrwdZybMp6auMixn9j4Du6TZsaryAf5ysYQwvZ5dBjmzdnekg6wPwzJvuPFKHzvdUZ59334y2Rq8CIqqlIygDGyZzS0fci_V9A32J6-BaYyln4uL6FERTpk-cBWDqWkUeACeaaLzaEHrpEOpVlD1TmxtkT8qX99pucRAydoppfh5VHVJEIUVVK1fnjWvyg2wxNay8PkXm-XrSSLfpxfNJiBTpKKxgpa1N1Cr5yiuojmRrqGl60JKt7-OdjSeNYNnrcBzA92fnzVOLyxd0MJinm8PLCw4EY4kgmEOzBuzyOEy5NQDokWZSwnGTAKlsiMJXiZOGFMVa4iQXuR7gkhvE1XSbiq2UM2LhOszN4HnAoPEMvQlkyIQBMyocDDfRrb5y5hptXdVdKQTm7S-VgwdE6uOiW0vho7ZRkdFk14udfLdzb7pulhztZyDxYDz1812_tZsFy2Ww3YPVQbZUOyjBTYaPPezAz0a3gEitWE4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hurwitz+rational+functions&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Barkovsky%2C+Yury&rft.au=Tyaglov%2C+Mikhail&rft.date=2011-10-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.volume=435&rft.issue=8&rft.spage=1845&rft.epage=1856&rft_id=info:doi/10.1016%2Fj.laa.2011.03.062&rft.externalDocID=S0024379511002989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon