Hurwitz rational functions
A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational functions and introduce a new type of determinants that can be treated as a generalization of the Hurwitz determinants.
Saved in:
| Published in: | Linear algebra and its applications Vol. 435; no. 8; pp. 1845 - 1856 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
15.10.2011
|
| Subjects: | |
| ISSN: | 0024-3795 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational functions and introduce a new type of determinants that can be treated as a generalization of the Hurwitz determinants. |
|---|---|
| AbstractList | A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational functions and introduce a new type of determinants that can be treated as a generalization of the Hurwitz determinants. |
| Author | Tyaglov, Mikhail Barkovsky, Yury |
| Author_xml | – sequence: 1 givenname: Yury surname: Barkovsky fullname: Barkovsky, Yury organization: Department of Calculus Mathematics and Mathematical Physics, Faculty of Mathematics, Mechanics & Computer Science, Southern Federal University, Milchakova str. 8a, 344090 Rostov-on-Don, Russia – sequence: 2 givenname: Mikhail surname: Tyaglov fullname: Tyaglov, Mikhail email: tyaglov@math.tu-berlin.de organization: Technische Universität Berlin, Institut für Mathematik, MA 4-5, Strasse des 17. Juni 136, 10623 Berlin, Germany |
| BookMark | eNp9z7FOwzAQgGEPRaItPABMfYGEOzu1iZhQBRSpEgvMlns-S45CguwUBE9PSjsxdLpb_tN9MzHp-o6FuEIoEVDfNGXrXCkBsQRVgpYTMQWQVaFMvTwXs5wbAKgMyKm4Xu_SVxx-FskNse9cuwi7jvZrvhBnwbWZL49zLt4eH15X62Lz8vS8ut8UpCoYCs3eMAbDpD2qWlONPtx6p0CiI-mM1hRkhVAHDUu9JTK81YaDqivFJqi5MIe7lPqcEwdLcfj7ZkguthbB7lm2sSPL7lkWlB1ZY4n_yo8U3136PtncHRoeSZ-Rk80UuSP2MTEN1vfxRP0L2G5pBA |
| CitedBy_id | crossref_primary_10_1007_s40315_016_0160_4 crossref_primary_10_33693_2313_223X_2024_11_3_52_56 |
| Cites_doi | 10.1007/BF01446812 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Inc. |
| Copyright_xml | – notice: 2011 Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.laa.2011.03.062 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EndPage | 1856 |
| ExternalDocumentID | 10_1016_j_laa_2011_03_062 S0024379511002989 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXKI AAXUO ABAOU ABDPE ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD ADVLN AEBSH AEKER AENEX AEXQZ AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K T9H TN5 TWZ WH7 WUQ XPP YQT ZMT ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AETEA AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c340t-6ed7e1f7ec6d1396c91df8da3021ac2a766cf24109f6056bcc7eb67ef3943e7f3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292439500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0024-3795 |
| IngestDate | Sat Nov 29 05:08:56 EST 2025 Tue Nov 18 22:20:21 EST 2025 Tue Dec 03 03:44:24 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Pole localization Hurwitz stable polynomials Root localization 26C10 Hurwitz rational function Hurwitz matrix 15B05 26C15 15A15 26C05 30C15 |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-6ed7e1f7ec6d1396c91df8da3021ac2a766cf24109f6056bcc7eb67ef3943e7f3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.laa.2011.03.062 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_laa_2011_03_062 crossref_primary_10_1016_j_laa_2011_03_062 elsevier_sciencedirect_doi_10_1016_j_laa_2011_03_062 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-15 |
| PublicationDateYYYYMMDD | 2011-10-15 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Linear algebra and its applications |
| PublicationYear | 2011 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | O. Holtz, M. Tyaglov, Structured matrices, continued fractions and root localization of polynomials, SIAM Review 2009, accepted for publication. Available from: arXiv:0912.470. Yu.S. Barkovskiy, Lectures on the Routh–Hurwitz Problem, 2008, in press. Available from Hurwitz (b0020) 1895; 46 Gantmacher (b0010) 2000; vol. II 1936 (in Russian). English transl. M.G. Krein, M.A. Naimark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra 10 (4) (1981) 265–308. Translated from the Russian by O. Boshko and J.L. Howland. M. Tyaglov, Generalized Hurwitz polynomials, 2010, submitted for publication. Available from: arXiv:1005.3032. . Frobenius (10.1016/j.laa.2011.03.062_fs010) 1894 Gantmacher (10.1016/j.laa.2011.03.062_b0010) 2000; vol. II 10.1016/j.laa.2011.03.062_b0030 Hurwitz (10.1016/j.laa.2011.03.062_b0020) 1895; 46 10.1016/j.laa.2011.03.062_b0005 10.1016/j.laa.2011.03.062_b0015 10.1016/j.laa.2011.03.062_b0025 |
| References_xml | – reference: M. Tyaglov, Generalized Hurwitz polynomials, 2010, submitted for publication. Available from: arXiv:1005.3032. – reference: O. Holtz, M. Tyaglov, Structured matrices, continued fractions and root localization of polynomials, SIAM Review 2009, accepted for publication. Available from: arXiv:0912.470. – reference: Yu.S. Barkovskiy, Lectures on the Routh–Hurwitz Problem, 2008, in press. Available from: – volume: vol. II year: 2000 ident: b0010 publication-title: The Theory of Matrices – volume: 46 start-page: 273 year: 1895 end-page: 284 ident: b0020 article-title: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt publication-title: Math. Ann. – reference: ▪ ▪, 1936 (in Russian). English transl. M.G. Krein, M.A. Naimark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra 10 (4) (1981) 265–308. Translated from the Russian by O. Boshko and J.L. Howland. – reference: . – start-page: 241 year: 1894 ident: 10.1016/j.laa.2011.03.062_fs010 article-title: Über das Trägheitsgesetz der quadratischen Formen publication-title: Sitzungsber. Ber. Acad. Wiss. Phys. Math. Klasse Berlin – ident: 10.1016/j.laa.2011.03.062_b0025 – ident: 10.1016/j.laa.2011.03.062_b0005 – ident: 10.1016/j.laa.2011.03.062_b0030 – volume: vol. II year: 2000 ident: 10.1016/j.laa.2011.03.062_b0010 – ident: 10.1016/j.laa.2011.03.062_b0015 – volume: 46 start-page: 273 year: 1895 ident: 10.1016/j.laa.2011.03.062_b0020 article-title: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt publication-title: Math. Ann. doi: 10.1007/BF01446812 |
| SSID | ssj0004702 |
| Score | 1.9491069 |
| Snippet | A generalization of Hurwitz stable polynomials to real rational functions is considered. We establish an analog of the Hurwitz stability criterion for rational... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1845 |
| SubjectTerms | Hurwitz matrix Hurwitz rational function Hurwitz stable polynomials Pole localization Root localization |
| Title | Hurwitz rational functions |
| URI | https://dx.doi.org/10.1016/j.laa.2011.03.062 |
| Volume | 435 |
| WOSCitedRecordID | wos000292439500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0024-3795 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 20180131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004702 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZQYYAB8RRvZWACBaVxEtsjQiBAgBgKKlPkOjbQVilK0_L49ZwbOwkIEAwsVmTFzuOz7r47n-8Q2m0KHipP57cTHTBQcFO6zKfQCEGJ31EUT0on3F6QqyvabrNrU5luOCknQNKUvrywp3-FGvoAbH109g9wl5NCB1wD6NAC7ND-CvjTUfb8mL_tZ9bNp1VX5ZazZ5-BXfJsX1f5AHu53EKo72dXTs6sNxgbJ-vdqIobbr3y-_5gXETf9x5stEZSOkV1SEZYl4t-AKKmKHdp5WKAw9oCoDUpB1ZhWNOYoPKjL6Vx4RjoHvQ5N8lS8YFnhO-HzNefNFIZJ2hD0LoxTBHrKWIPx57WudM-CRltoOnDs-P2eXUUlngmQXzxQXYjexLS9-k9vqYiNXrRWkDzxi5wDgs8F9GUTJfQ3GWZVHe4jDYMso5F1imRXUE3J8eto1PXlLZwBQ683I1kQmRTESmiBDh4JFgzUTThGCgXFz4nUSQUkCuPKbA3o44QunYNkQqzAEui8CpqpINUriGHcRnwMCSKqwC4LaYRD0Ismd-hhAH3WEee_cpYmLzvuvxIP_72766jvXLIU5H05KebA_vrYsPaCjYWwzL4ftjGX56xiWarZbuFGnk2kttoRozzx2G2Y9bAO5VcX10 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hurwitz+rational+functions&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Barkovsky%2C+Yury&rft.au=Tyaglov%2C+Mikhail&rft.date=2011-10-15&rft.issn=0024-3795&rft.volume=435&rft.issue=8&rft.spage=1845&rft.epage=1856&rft_id=info:doi/10.1016%2Fj.laa.2011.03.062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_laa_2011_03_062 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |