Granular counting of uncertain data

We propose a definition of granular count realized in the presence of uncertain data modeled through possibility distributions. We show that the resulting counts are fuzzy intervals in the domain of natural numbers. Based on this result, we devise two algorithms for granular counting: an exact count...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuzzy sets and systems Ročník 387; s. 108 - 126
Hlavní autoři: Mencar, C., Pedrycz, W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.05.2020
Témata:
ISSN:0165-0114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a definition of granular count realized in the presence of uncertain data modeled through possibility distributions. We show that the resulting counts are fuzzy intervals in the domain of natural numbers. Based on this result, we devise two algorithms for granular counting: an exact counting algorithm with quadratic-time complexity and an approximate counting algorithm with linear-time complexity. We compare the two algorithms on synthetic data and show their application to a Bioinformatics scenario concerning the assessment of gene expressions in cells.
ISSN:0165-0114
DOI:10.1016/j.fss.2019.04.018