RANK-DEFICIENT NONLINEAR LEAST SQUARES PROBLEMS AND SUBSET SELECTION
We examine the local convergence of the Levenberg—Marquardt method for the solution of nonlinear least squares problems that are rank-deficient and have nonzero residual. We show that replacing the Jacobian by a truncated singular value decomposition can be numerically unstable. We recommend instead...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 49; číslo 3/4; s. 1244 - 1266 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2011
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We examine the local convergence of the Levenberg—Marquardt method for the solution of nonlinear least squares problems that are rank-deficient and have nonzero residual. We show that replacing the Jacobian by a truncated singular value decomposition can be numerically unstable. We recommend instead the use of subset selection. We corroborate our recommendations by perturbation analyses and numerical experiments. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/090780882 |