RANK-DEFICIENT NONLINEAR LEAST SQUARES PROBLEMS AND SUBSET SELECTION

We examine the local convergence of the Levenberg—Marquardt method for the solution of nonlinear least squares problems that are rank-deficient and have nonzero residual. We show that replacing the Jacobian by a truncated singular value decomposition can be numerically unstable. We recommend instead...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on numerical analysis Ročník 49; číslo 3/4; s. 1244 - 1266
Hlavní autori: IPSEN, I. C. F., KELLEY, C. T., POPE, S. R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2011
Predmet:
ISSN:0036-1429, 1095-7170
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We examine the local convergence of the Levenberg—Marquardt method for the solution of nonlinear least squares problems that are rank-deficient and have nonzero residual. We show that replacing the Jacobian by a truncated singular value decomposition can be numerically unstable. We recommend instead the use of subset selection. We corroborate our recommendations by perturbation analyses and numerical experiments.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0036-1429
1095-7170
DOI:10.1137/090780882