Garland's method for token graphs

The k-th token graph of a graph G=(V,E) is the graph Fk(G) whose vertices are the k-subsets of V and whose edges are all pairs of k-subsets A,B such that the symmetric difference of A and B forms an edge in G. Let L(G) be the Laplacian matrix of G, and Lk(G) be the Laplacian matrix of Fk(G). It was...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 700; s. 50 - 60
Hlavní autor: Lew, Alan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.11.2024
Témata:
ISSN:0024-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The k-th token graph of a graph G=(V,E) is the graph Fk(G) whose vertices are the k-subsets of V and whose edges are all pairs of k-subsets A,B such that the symmetric difference of A and B forms an edge in G. Let L(G) be the Laplacian matrix of G, and Lk(G) be the Laplacian matrix of Fk(G). It was shown by Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez that for any graph G on n vertices and any 0≤ℓ≤k≤⌊n/2⌋, the spectrum of Lℓ(G) is contained in that of Lk(G). Here, we continue to study the relation between the spectrum of Lk(G) and that of Lk−1(G). In particular, we show that, for 1≤k≤⌊n/2⌋, any eigenvalue λ of Lk(G) that is not contained in the spectrum of Lk−1(G) satisfiesk(λ2(L(G))−k+1)≤λ≤kλn(L(G)), where λ2(L(G)) is the second smallest eigenvalue of L(G) (also known as the algebraic connectivity of G), and λn(L(G)) is its largest eigenvalue. Our proof relies on an adaptation of Garland's method, originally developed for the study of high-dimensional Laplacians of simplicial complexes.
ISSN:0024-3795
DOI:10.1016/j.laa.2024.07.018