A Novel Physics‐Aware Machine Learning‐Based Dynamic Error Correction Model for Improving Streamflow Forecast Accuracy

Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reli...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 59; no. 2
Main Authors: Roy, Abhinanda, Kasiviswanathan, K. S., Patidar, Sandhya, Adeloye, Adebayo J., Soundharajan, Bankaru‐Swamy, Ojha, Chandra Shekhar P.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.02.2023
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time. Key Points Hybrid hydrological model integrates process‐based model with machine learning algorithm through data assimilation technique Dynamic error correction framework capable of improving the streamflow forecast at longer lead time is proposed Overall the developed framework improves the forecast accuracy along with quantifying the model prediction uncertainty
AbstractList Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time. Hybrid hydrological model integrates process‐based model with machine learning algorithm through data assimilation technique Dynamic error correction framework capable of improving the streamflow forecast at longer lead time is proposed Overall the developed framework improves the forecast accuracy along with quantifying the model prediction uncertainty
Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time.
Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time. Key Points Hybrid hydrological model integrates process‐based model with machine learning algorithm through data assimilation technique Dynamic error correction framework capable of improving the streamflow forecast at longer lead time is proposed Overall the developed framework improves the forecast accuracy along with quantifying the model prediction uncertainty
Author Adeloye, Adebayo J.
Roy, Abhinanda
Kasiviswanathan, K. S.
Ojha, Chandra Shekhar P.
Patidar, Sandhya
Soundharajan, Bankaru‐Swamy
Author_xml – sequence: 1
  givenname: Abhinanda
  surname: Roy
  fullname: Roy, Abhinanda
  organization: Indian Institute of Technology Roorkee
– sequence: 2
  givenname: K. S.
  orcidid: 0000-0003-4706-6931
  surname: Kasiviswanathan
  fullname: Kasiviswanathan, K. S.
  email: k.kasiviswanathan@wr.iitr.ac.in
  organization: Indian Institute of Technology Roorkee
– sequence: 3
  givenname: Sandhya
  orcidid: 0000-0001-9562-6986
  surname: Patidar
  fullname: Patidar, Sandhya
  organization: Heriot‐Watt University
– sequence: 4
  givenname: Adebayo J.
  orcidid: 0000-0002-2820-4596
  surname: Adeloye
  fullname: Adeloye, Adebayo J.
  organization: Heriot‐Watt University
– sequence: 5
  givenname: Bankaru‐Swamy
  orcidid: 0000-0001-6143-9293
  surname: Soundharajan
  fullname: Soundharajan, Bankaru‐Swamy
  organization: Amrita Vishwa Vidyapeetham
– sequence: 6
  givenname: Chandra Shekhar P.
  surname: Ojha
  fullname: Ojha, Chandra Shekhar P.
  organization: Indian Institute of Technology Roorkee
BookMark eNp9kctOHDEQRa0IJAaSHR9gKZss0uBX-7GcTHhJA4kmiVi2PG47GHXbxO5h1Kz4BL6RL4lHwwIhJauSqs69dVW1D3ZCDBaAQ4yOMCLqmCBCrheIUorlOzDBirFKKEF3wAQhRitMldgD-znfIoRZzcUEPEzhVby3Hfx-M2Zv8vPj03Stk4WX2tz4YOHc6hR8-F0GX3S2Lfw6Bt17A09SignOYkrWDD4GeBnb4uNK86K_S_G-iOCPIVnduy6u4WksoM4DnBqzStqM78Gu0122H17qAfh1evJzdl7Nv51dzKbzylCG6so5vBSsbhlujTSSUIG4VtxJJ0W7JMzwpZOW15gvMSXE1cZJZjAnWmlFHacH4NPWt4T6s7J5aHqfje06HWxc5YZIjJVUnJKCfnyD3sZVCiVdQ4RQuBaSbww_bymTYs7JuuYu-V6nscGo2Tyief2IgpM3uPGD3pxsSNp3_xLRrWjtOzv-d0FzvZgtCGd1Tf8Cukid0g
CitedBy_id crossref_primary_10_2166_hydro_2023_217
crossref_primary_10_1016_j_hazadv_2025_100678
crossref_primary_10_1029_2023GL104464
crossref_primary_10_1007_s12040_025_02567_5
crossref_primary_10_1016_j_ejrh_2025_102549
crossref_primary_10_1016_j_jhydrol_2024_130937
crossref_primary_10_1016_j_earscirev_2025_105276
crossref_primary_10_5194_hess_28_2871_2024
crossref_primary_10_1007_s11269_025_04113_w
crossref_primary_10_1016_j_jhydrol_2025_132963
crossref_primary_10_1016_j_jhydrol_2025_133954
crossref_primary_10_3390_earth6030064
crossref_primary_10_3390_w17172506
crossref_primary_10_1016_j_ejrh_2025_102337
crossref_primary_10_1061_JCCEE5_CPENG_6757
crossref_primary_10_1016_j_jhydrol_2025_133318
crossref_primary_10_3390_su16041376
crossref_primary_10_1016_j_ejrh_2025_102331
crossref_primary_10_1016_j_jhydrol_2025_133114
crossref_primary_10_5194_hess_29_3589_2025
crossref_primary_10_1080_02626667_2024_2426720
Cites_doi 10.1175/JHM-D-21-0189.1
10.1038/s41598-021-91327-8
10.1029/2005WR004093
10.5194/hessd-8-10895-2011
10.1002/2018WR022627
10.3390/w12030787
10.1016/j.accre.2017.08.006
10.1029/2000JD900719
10.1016/j.biosystemseng.2018.04.022
10.1016/j.jhydrol.2022.127683
10.3390/app11031114
10.1007/s11269-015-1080-1
10.1007/978-3-642-40457-3_30-1
10.1016/j.jmp.2016.05.006
10.1029/2019WR025237
10.1016/j.jhydrol.2015.10.040
10.1111/j.1752-1688.2009.00302.x
10.1016/j.jhydrol.2014.01.023
10.1007/978-1-4614-6316-0
10.3390/hydrology5030044
10.1016/j.ejrh.2015.06.023
10.3390/w14193013
10.1016/j.ejrh.2021.100849
10.1002/qj.4116
10.5194/hess-15-3237-2011
10.1061/(asce)he.1943-5584.0000751
10.1007/s11269-021-02883-7
10.1098/rsta.2020.0086
10.1002/wrcr.20291
10.1109/ISPA.2005.195385
10.1002/2015WR018266
10.3182/20110828-6-IT-1002.02326
10.1029/2021wr030272
10.5194/gmd-2019-136
10.1016/j.jhydrol.2020.125531
10.1061/(ASCE)WR.1943-5452.0001462
10.1016/j.advwatres.2020.103721
10.1007/s11269-014-0600-8
10.3390/w13121696
10.1016/j.pce.2020.102899
10.26599/BDMA.2018.9020033
10.1016/j.jhydrol.2017.03.032
10.1623/hysj.52.2.376
10.1029/2010WR009137
10.1016/j.jhydrol.2010.01.018
10.1016/j.advwatres.2017.11.011
10.1016/j.advengsoft.2008.08.002
10.5194/hess-21-4927-2017
10.1002/2015WR017192
10.1111/jfr3.12638
10.1029/2020WR028091
10.1016/j.jhydrol.2010.06.007
10.1109/78.978374
10.1029/2019WR026979
10.1080/09715010.2017.1422192
10.3390/w12092440
10.1016/j.jhydrol.2020.124686
10.1016/j.jhydrol.2018.09.052
10.1007/s00477-022-02258-3
10.1061/(asce)he.1943-5584.0002064
10.5194/hess-22-2903-2018
10.3390/w10020192
10.1659/MRD-JOURNAL-D-15-00009
10.1016/j.jhydrol.2015.11.050
10.1061/(asce)he.1943-5584.0001218
10.1029/2018WR023629
10.16943/ptinsa/2020/49802
10.1061/(asce)he.1943-5584.0001828
10.1029/2019WR025228
10.1061/(ASCE)1084-0699(2005)10:4(264)
10.5194/hess-21-4021-2017
10.5194/hess-17-445-2013
10.1016/j.jhydrol.2013.08.030
10.1016/j.jhydrol.2008.02.013
10.1029/2004WR003604
10.1016/j.advwatres.2004.09.002
10.1016/j.eswa.2011.04.114
10.1007/s00477-013-0751-9
10.5194/hess-2016-464
10.3934/fods.2020004
10.1016/j.jhydrol.2021.127297
10.1016/j.jhydrol.2019.03.051
10.1016/j.jhydrol.2010.06.013
10.1029/2020WR028390
10.2166/nh.1998.15
10.1016/j.jhydrol.2016.02.044
10.1080/02626667.2018.1538593
10.1016/j.jhydrol.2021.126666
10.1007/s11269-019-02273-0
10.1016/j.jhydrol.2008.03.027
10.1016/j.cageo.2021.105019
10.1002/hyp.10510
10.1007/s00477-018-1553-x
10.1080/02626667.2017.1308511
10.3390/s21020438
10.1016/j.ress.2021.107961
10.1016/j.advwatres.2013.03.008
10.1007/s10333-020-00822-7
10.4236/acs.2016.62017
10.1007/s11269-015-1171-z
10.1007/s00521-013-1443-6
10.5194/gmd-6-2087-2013
10.1016/j.jhydrol.2020.124666
10.1029/2011WR011649
10.1029/2007WR006758
10.1016/j.jhydrol.2021.125979
10.5194/npg-26-143-2019
10.1007/s00477-016-1273-z
10.1029/2020WR027859
10.1016/j.jocs.2021.101323
10.1016/j.pce.2006.03.020
10.1109/MSP.2014.2330626
10.1029/2005WR004838
10.1016/j.jhydrol.2013.06.043
10.1016/j.advwatres.2011.01.004
10.1029/2012WR012144
10.1007/s12145-020-00528-8
10.3389/frai.2020.565859
10.1016/j.jhydrol.2020.124945
10.3390/su13073670
10.1016/j.jhydrol.2014.03.057
10.1016/j.jhydrol.2014.08.009
10.3390/geosciences11060255
10.3390/w10111536
10.1061/(asce)0733-9437(1999)125:3(148)
10.1016/j.procs.2017.11.212
10.1016/j.jhydrol.2012.01.011
10.2166/hydro.2008.015
10.3390/w11071327
10.1080/02626667.2013.842282
ContentType Journal Article
Copyright 2023. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2023. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2022WR033318
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
Physics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2022WR033318
WRCR26455
Genre researchArticle
GeographicLocations Nepal
India
GeographicLocations_xml – name: Nepal
– name: India
GrantInformation_xml – fundername: SPARC
  funderid: P1228
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-c3405-ff1b745d41dc8c823706a96f8f87db24c6bf8e6516b1322f5cf84c162a9a93f63
IEDL.DBID WIN
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000949529900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:27:54 EDT 2025
Wed Aug 13 07:50:13 EDT 2025
Sat Nov 29 01:36:51 EST 2025
Tue Nov 18 21:43:00 EST 2025
Wed Jan 22 16:18:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3405-ff1b745d41dc8c823706a96f8f87db24c6bf8e6516b1322f5cf84c162a9a93f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4706-6931
0000-0001-9562-6986
0000-0001-6143-9293
0000-0002-2820-4596
PQID 2779157866
PQPubID 105507
PageCount 30
ParticipantIDs proquest_miscellaneous_2811989632
proquest_journals_2779157866
crossref_primary_10_1029_2022WR033318
crossref_citationtrail_10_1029_2022WR033318
wiley_primary_10_1029_2022WR033318_WRCR26455
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_8_1_36_1
e_1_2_8_1_13_1
e_1_2_8_1_55_1
e_1_2_8_1_32_1
e_1_2_8_1_51_1
e_1_2_8_1_70_1
e_1_2_8_1_124_1
e_1_2_8_1_101_1
e_1_2_8_1_105_1
e_1_2_8_1_128_1
e_1_2_8_1_81_1
e_1_2_8_1_85_1
e_1_2_8_2_9_1
e_1_2_8_1_89_1
e_1_2_8_1_120_1
e_1_2_8_1_29_1
e_1_2_8_1_48_1
e_1_2_8_1_47_1
e_1_2_8_1_24_1
e_1_2_8_1_66_1
e_1_2_8_1_43_1
e_1_2_8_2_5_1
e_1_2_8_1_20_1
e_1_2_8_1_62_1
e_1_2_8_1_109_1
e_1_2_8_1_112_1
e_1_2_8_1_3_1
e_1_2_8_1_116_1
e_1_2_8_1_7_1
e_1_2_8_1_93_1
e_1_2_8_1_74_1
e_1_2_8_1_97_1
e_1_2_8_1_78_1
e_1_2_8_1_17_1
e_1_2_8_1_59_1
e_1_2_8_1_14_1
e_1_2_8_1_33_1
e_1_2_8_1_56_1
e_1_2_8_1_10_1
e_1_2_8_1_52_1
e_1_2_8_1_71_1
e_1_2_8_1_8_1
e_1_2_8_1_118_1
e_1_2_8_1_102_1
e_1_2_8_1_121_1
e_1_2_8_1_106_1
e_1_2_8_1_82_1
e_1_2_8_1_125_1
e_1_2_8_1_86_1
e_1_2_8_1_26_1
e_1_2_8_1_49_1
e_1_2_8_1_25_1
e_1_2_8_1_44_1
e_1_2_8_1_67_1
e_1_2_8_2_2_1
e_1_2_8_1_21_1
e_1_2_8_1_40_1
e_1_2_8_1_63_1
e_1_2_8_2_6_1
Aghakouchak A. (e_1_2_8_1_9_1) 2010; 26
e_1_2_8_1_113_1
e_1_2_8_1_90_1
e_1_2_8_1_117_1
e_1_2_8_1_4_1
e_1_2_8_1_94_1
e_1_2_8_1_75_1
e_1_2_8_1_98_1
e_1_2_8_1_18_1
e_1_2_8_1_37_1
e_1_2_8_1_79_1
e_1_2_8_1_11_1
e_1_2_8_1_57_1
e_1_2_8_1_34_1
e_1_2_8_1_53_1
e_1_2_8_1_30_1
e_1_2_8_1_119_1
e_1_2_8_1_122_1
Kuptametee C. (e_1_2_8_1_54_1) 2022
e_1_2_8_1_103_1
e_1_2_8_1_83_1
e_1_2_8_1_126_1
e_1_2_8_2_7_1
e_1_2_8_1_87_1
e_1_2_8_1_27_1
e_1_2_8_1_68_1
e_1_2_8_1_45_1
e_1_2_8_2_3_1
e_1_2_8_1_64_1
e_1_2_8_1_41_1
e_1_2_8_2_10_1
e_1_2_8_1_60_1
e_1_2_8_1_107_1
e_1_2_8_1_110_1
e_1_2_8_1_91_1
e_1_2_8_1_114_1
e_1_2_8_1_5_1
e_1_2_8_1_72_1
e_1_2_8_1_95_1
e_1_2_8_1_19_1
e_1_2_8_1_76_1
e_1_2_8_1_15_1
e_1_2_8_1_99_1
e_1_2_8_1_38_1
e_1_2_8_1_12_1
e_1_2_8_1_35_1
e_1_2_8_1_58_1
e_1_2_8_1_31_1
e_1_2_8_1_50_1
e_1_2_8_1_100_1
e_1_2_8_1_123_1
e_1_2_8_1_80_1
e_1_2_8_1_127_1
e_1_2_8_1_104_1
e_1_2_8_1_84_1
Bolićbolić M. (e_1_2_8_1_22_1) 2004; 15
e_1_2_8_2_8_1
e_1_2_8_1_88_1
e_1_2_8_1_28_1
e_1_2_8_1_23_1
e_1_2_8_1_46_1
e_1_2_8_1_69_1
e_1_2_8_1_42_1
e_1_2_8_1_65_1
e_1_2_8_2_4_1
e_1_2_8_1_61_1
e_1_2_8_1_108_1
e_1_2_8_1_2_1
e_1_2_8_1_111_1
e_1_2_8_1_6_1
e_1_2_8_1_92_1
e_1_2_8_1_115_1
e_1_2_8_1_73_1
e_1_2_8_1_96_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
e_1_2_8_1_77_1
References_xml – ident: e_1_2_8_1_25_1
  doi: 10.1175/JHM-D-21-0189.1
– ident: e_1_2_8_1_79_1
  doi: 10.1038/s41598-021-91327-8
– ident: e_1_2_8_1_117_1
  doi: 10.1029/2005WR004093
– ident: e_1_2_8_2_5_1
– ident: e_1_2_8_1_100_1
  doi: 10.5194/hessd-8-10895-2011
– ident: e_1_2_8_1_85_1
  doi: 10.1002/2018WR022627
– ident: e_1_2_8_1_74_1
  doi: 10.3390/w12030787
– ident: e_1_2_8_1_93_1
  doi: 10.1016/j.accre.2017.08.006
– ident: e_1_2_8_1_111_1
  doi: 10.1029/2000JD900719
– ident: e_1_2_8_1_102_1
  doi: 10.1016/j.biosystemseng.2018.04.022
– ident: e_1_2_8_1_104_1
  doi: 10.1016/j.jhydrol.2022.127683
– ident: e_1_2_8_1_13_1
  doi: 10.3390/app11031114
– ident: e_1_2_8_1_61_1
  doi: 10.1007/s11269-015-1080-1
– ident: e_1_2_8_1_68_1
  doi: 10.1007/978-3-642-40457-3_30-1
– ident: e_1_2_8_2_10_1
  doi: 10.1016/j.jmp.2016.05.006
– ident: e_1_2_8_1_109_1
  doi: 10.1029/2019WR025237
– ident: e_1_2_8_1_97_1
  doi: 10.1016/j.jhydrol.2015.10.040
– ident: e_1_2_8_1_123_1
  doi: 10.1111/j.1752-1688.2009.00302.x
– ident: e_1_2_8_1_108_1
  doi: 10.1016/j.jhydrol.2014.01.023
– ident: e_1_2_8_2_9_1
  doi: 10.1007/978-1-4614-6316-0
– ident: e_1_2_8_1_81_1
  doi: 10.3390/hydrology5030044
– ident: e_1_2_8_1_32_1
  doi: 10.1016/j.ejrh.2015.06.023
– ident: e_1_2_8_1_17_1
  doi: 10.3390/w14193013
– ident: e_1_2_8_1_76_1
  doi: 10.1016/j.ejrh.2021.100849
– ident: e_1_2_8_1_36_1
  doi: 10.1002/qj.4116
– ident: e_1_2_8_1_75_1
  doi: 10.5194/hess-15-3237-2011
– ident: e_1_2_8_2_7_1
  doi: 10.1061/(asce)he.1943-5584.0000751
– ident: e_1_2_8_1_127_1
  doi: 10.1007/s11269-021-02883-7
– ident: e_1_2_8_1_24_1
  doi: 10.1098/rsta.2020.0086
– ident: e_1_2_8_1_89_1
  doi: 10.1002/wrcr.20291
– ident: e_1_2_8_1_33_1
  doi: 10.1109/ISPA.2005.195385
– ident: e_1_2_8_1_65_1
  doi: 10.1002/2015WR018266
– ident: e_1_2_8_1_88_1
  doi: 10.3182/20110828-6-IT-1002.02326
– ident: e_1_2_8_2_6_1
  doi: 10.1029/2021wr030272
– ident: e_1_2_8_1_23_1
  doi: 10.5194/gmd-2019-136
– ident: e_1_2_8_1_98_1
  doi: 10.1016/j.jhydrol.2020.125531
– volume-title: A review of resampling techniques in particle filtering framework
  year: 2022
  ident: e_1_2_8_1_54_1
– ident: e_1_2_8_1_29_1
  doi: 10.1061/(ASCE)WR.1943-5452.0001462
– ident: e_1_2_8_1_3_1
  doi: 10.1016/j.advwatres.2020.103721
– ident: e_1_2_8_1_57_1
  doi: 10.1007/s11269-014-0600-8
– ident: e_1_2_8_1_70_1
  doi: 10.3390/w13121696
– ident: e_1_2_8_1_121_1
  doi: 10.1016/j.pce.2020.102899
– ident: e_1_2_8_1_128_1
  doi: 10.26599/BDMA.2018.9020033
– ident: e_1_2_8_1_12_1
  doi: 10.1016/j.jhydrol.2017.03.032
– ident: e_1_2_8_1_53_1
  doi: 10.1623/hysj.52.2.376
– ident: e_1_2_8_1_16_1
– ident: e_1_2_8_1_21_1
  doi: 10.1029/2010WR009137
– ident: e_1_2_8_1_35_1
  doi: 10.1016/j.jhydrol.2010.01.018
– ident: e_1_2_8_1_5_1
  doi: 10.1016/j.advwatres.2017.11.011
– ident: e_1_2_8_1_31_1
  doi: 10.1016/j.advengsoft.2008.08.002
– ident: e_1_2_8_1_122_1
  doi: 10.5194/hess-21-4927-2017
– ident: e_1_2_8_1_84_1
  doi: 10.1002/2015WR017192
– ident: e_1_2_8_1_120_1
  doi: 10.1111/jfr3.12638
– ident: e_1_2_8_1_72_1
  doi: 10.1029/2020WR028091
– ident: e_1_2_8_1_6_1
  doi: 10.1016/j.jhydrol.2010.06.007
– ident: e_1_2_8_1_15_1
  doi: 10.1109/78.978374
– ident: e_1_2_8_1_62_1
  doi: 10.1029/2019WR026979
– ident: e_1_2_8_1_11_1
  doi: 10.1080/09715010.2017.1422192
– ident: e_1_2_8_1_80_1
  doi: 10.3390/w12092440
– ident: e_1_2_8_1_91_1
  doi: 10.1016/j.jhydrol.2020.124686
– ident: e_1_2_8_1_41_1
  doi: 10.1016/j.jhydrol.2018.09.052
– ident: e_1_2_8_1_110_1
  doi: 10.1007/s00477-022-02258-3
– ident: e_1_2_8_1_30_1
  doi: 10.1061/(asce)he.1943-5584.0002064
– ident: e_1_2_8_1_83_1
  doi: 10.5194/hess-22-2903-2018
– ident: e_1_2_8_1_42_1
  doi: 10.3390/w10020192
– ident: e_1_2_8_1_48_1
  doi: 10.1659/MRD-JOURNAL-D-15-00009
– ident: e_1_2_8_1_77_1
  doi: 10.1016/j.jhydrol.2015.11.050
– ident: e_1_2_8_1_39_1
  doi: 10.1061/(asce)he.1943-5584.0001218
– ident: e_1_2_8_1_4_1
  doi: 10.1029/2018WR023629
– ident: e_1_2_8_1_105_1
  doi: 10.16943/ptinsa/2020/49802
– ident: e_1_2_8_1_40_1
  doi: 10.1061/(asce)he.1943-5584.0001828
– ident: e_1_2_8_1_52_1
  doi: 10.1029/2019WR025228
– ident: e_1_2_8_1_107_1
  doi: 10.1061/(ASCE)1084-0699(2005)10:4(264)
– ident: e_1_2_8_1_116_1
  doi: 10.5194/hess-21-4021-2017
– ident: e_1_2_8_1_10_1
  doi: 10.5194/hess-17-445-2013
– volume: 15
  year: 2004
  ident: e_1_2_8_1_22_1
  article-title: Resampling algorithms for particle filters: A computational complexity perspective
  publication-title: EURASIP Journal on Applied Signal Processing
– ident: e_1_2_8_1_44_1
  doi: 10.1016/j.jhydrol.2013.08.030
– ident: e_1_2_8_1_7_1
  doi: 10.1016/j.jhydrol.2008.02.013
– ident: e_1_2_8_1_43_1
– ident: e_1_2_8_1_67_1
  doi: 10.1029/2004WR003604
– ident: e_1_2_8_1_69_1
  doi: 10.1016/j.advwatres.2004.09.002
– ident: e_1_2_8_1_38_1
  doi: 10.1016/j.eswa.2011.04.114
– ident: e_1_2_8_1_112_1
  doi: 10.1007/s00477-013-0751-9
– ident: e_1_2_8_1_124_1
  doi: 10.5194/hess-2016-464
– ident: e_1_2_8_1_20_1
  doi: 10.3934/fods.2020004
– ident: e_1_2_8_1_27_1
  doi: 10.1016/j.jhydrol.2021.127297
– ident: e_1_2_8_2_4_1
  doi: 10.1016/j.jhydrol.2019.03.051
– ident: e_1_2_8_1_50_1
  doi: 10.1016/j.jhydrol.2010.06.013
– ident: e_1_2_8_1_87_1
  doi: 10.1029/2020WR028390
– ident: e_1_2_8_1_99_1
  doi: 10.2166/nh.1998.15
– ident: e_1_2_8_1_46_1
  doi: 10.1016/j.jhydrol.2016.02.044
– ident: e_1_2_8_1_82_1
  doi: 10.1080/02626667.2018.1538593
– ident: e_1_2_8_1_63_1
  doi: 10.1016/j.jhydrol.2021.126666
– ident: e_1_2_8_1_49_1
  doi: 10.1007/s11269-019-02273-0
– ident: e_1_2_8_1_95_1
  doi: 10.1016/j.jhydrol.2008.03.027
– ident: e_1_2_8_1_103_1
  doi: 10.1016/j.cageo.2021.105019
– ident: e_1_2_8_1_18_1
  doi: 10.1002/hyp.10510
– ident: e_1_2_8_2_8_1
  doi: 10.1007/s00477-018-1553-x
– ident: e_1_2_8_1_37_1
  doi: 10.1080/02626667.2017.1308511
– ident: e_1_2_8_1_34_1
  doi: 10.3390/s21020438
– ident: e_1_2_8_1_14_1
  doi: 10.1016/j.ress.2021.107961
– ident: e_1_2_8_1_126_1
  doi: 10.1016/j.advwatres.2013.03.008
– ident: e_1_2_8_1_47_1
  doi: 10.1007/s10333-020-00822-7
– ident: e_1_2_8_1_92_1
  doi: 10.4236/acs.2016.62017
– ident: e_1_2_8_1_8_1
  doi: 10.1007/s11269-015-1171-z
– ident: e_1_2_8_1_96_1
  doi: 10.1007/s00521-013-1443-6
– ident: e_1_2_8_1_60_1
  doi: 10.5194/gmd-6-2087-2013
– ident: e_1_2_8_1_101_1
  doi: 10.1016/j.jhydrol.2020.124666
– ident: e_1_2_8_1_73_1
  doi: 10.1029/2011WR011649
– ident: e_1_2_8_1_94_1
  doi: 10.1029/2007WR006758
– ident: e_1_2_8_2_3_1
  doi: 10.1016/j.jhydrol.2021.125979
– ident: e_1_2_8_1_19_1
  doi: 10.5194/npg-26-143-2019
– ident: e_1_2_8_1_64_1
  doi: 10.1007/s00477-016-1273-z
– ident: e_1_2_8_2_2_1
  doi: 10.1029/2020WR027859
– ident: e_1_2_8_1_119_1
  doi: 10.1016/j.jocs.2021.101323
– ident: e_1_2_8_1_26_1
  doi: 10.1016/j.pce.2006.03.020
– ident: e_1_2_8_1_58_1
  doi: 10.1109/MSP.2014.2330626
– ident: e_1_2_8_1_115_1
  doi: 10.1029/2005WR004838
– ident: e_1_2_8_1_45_1
  doi: 10.1016/j.jhydrol.2013.06.043
– ident: e_1_2_8_1_125_1
  doi: 10.1016/j.advwatres.2011.01.004
– ident: e_1_2_8_1_66_1
  doi: 10.1029/2012WR012144
– ident: e_1_2_8_1_113_1
  doi: 10.1007/s12145-020-00528-8
– ident: e_1_2_8_1_28_1
  doi: 10.3389/frai.2020.565859
– ident: e_1_2_8_1_55_1
  doi: 10.1016/j.jhydrol.2020.124945
– ident: e_1_2_8_1_56_1
  doi: 10.3390/su13073670
– ident: e_1_2_8_1_78_1
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 26
  start-page: 963
  year: 2010
  ident: e_1_2_8_1_9_1
  article-title: Application of a conceptual hydrologic model in teaching hydrologic processes
  publication-title: International Journal of Engineering Education
– ident: e_1_2_8_1_59_1
  doi: 10.1016/j.jhydrol.2014.08.009
– ident: e_1_2_8_1_86_1
  doi: 10.3390/geosciences11060255
– ident: e_1_2_8_1_71_1
  doi: 10.3390/w10111536
– ident: e_1_2_8_1_114_1
  doi: 10.1061/(asce)0733-9437(1999)125:3(148)
– ident: e_1_2_8_1_2_1
  doi: 10.1016/j.procs.2017.11.212
– ident: e_1_2_8_1_51_1
  doi: 10.1016/j.jhydrol.2012.01.011
– ident: e_1_2_8_1_106_1
  doi: 10.2166/hydro.2008.015
– ident: e_1_2_8_1_118_1
  doi: 10.3390/w11071327
– ident: e_1_2_8_1_90_1
  doi: 10.1080/02626667.2013.842282
SSID ssj0014567
Score 2.4960804
Snippet Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Climate change
Environmental impact
Error correction
Error correction & detection
Flood forecasting
Flood warning systems
Floods
Forecast accuracy
Frameworks
HBV model
hybrid model
India
Lead time
Machine learning
Mathematical models
Model accuracy
model validation
Modelling
Nepal
particle filter
Physics
random forest
River basins
Rivers
Stream discharge
Stream flow
streamflow forecast
Streamflow forecasting
Uncertainty
uncertainty quantification
Warning systems
water
watersheds
Title A Novel Physics‐Aware Machine Learning‐Based Dynamic Error Correction Model for Improving Streamflow Forecast Accuracy
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR033318
https://www.proquest.com/docview/2779157866
https://www.proquest.com/docview/2811989632
Volume 59
WOSCitedRecordID wos000949529900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQhgQvbNxEYZuMBE8QUV_iy2PpVoE0KlQxdW-R49gDqTQoaTeNJ34Cv5Ffgo_jhvIAEuItko-VKPaxP_uc830IPROSeGJYmUmR84xTKzNt5DCzjjLghgmIIRYKn8rpVJ2f6_fpwg1qYTp-iP7CDTwjrtfg4KZsE9kAcGSGUzudz4aMhVkZlmDCo1_O3077IELABnITYAagk_LeQ_dX251_35F-wcxtsBp3m8ne_37nPrqTcCYedRPjLrrhlvfQrU0Zchuek_z5x-v76OsIT-tLt8AxH9S2P759H12ZxuF3MdXS4cTCehEaXodtr8LHnZA9PmmausFjkPiIBRIYtNUWOCBh3F9XYIh8m89-UV9hUAK1pl3hkbXrxtjrB-hscvJh_CZLogyZZQHcZd6TUvK84qSyygLVzVAYLbzySlYl5VaUXjmRE1HCQdfn1ituiaBGG828YA_RzrJeukcIa0m99lZWXCjunVOl1dxLxUqojxV6gF5sBqawibEchDMWRYycU11s_9sBet5bf-mYOv5gd7AZ4yL5a1tQKTUJi5cQA_S0bw6eBuETs3T1OtgoAglmgtEBehlH_K_vKeaz8SzAzTx__G_mT9Bt0LTvUsMP0M6qWbtDdNNerj61zRHaPZ5Nzk6P4lT_CTxs_Ic
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CDmm8jLsoDDASPEFEEzu-PJZu1RBdhapN21vkOPaGVBqUtJu2J34Cv5Ffgk_ihvIAEuItkp2L4nPszz7nfB_AKy5iF2uaR4KnLGKJEZHSYhAZm1DkhvGIoSkUnojpVJ6eqk9B5xRrYVp-iO7ADT2jma_RwfFAOrANIEmm37YnJ7MBpd4sb8IW85aU9mBrbzY-nnSBBI8PxDrIjGAn5L77J7zbvP_3VekX1NwErM2KM77z3996F3YC2CTD1jruwQ27uA_b61rk2l8HDfTzqwdwPSTT8sLOSZMUauof374PL3VlyWGTb2lJoGI98w3v_dpXkL1WzZ7sV1VZkRHqfDRVEgQF1ubEw2HSnVkQDH_rL25eXhKUAzW6XpKhMatKm6uHcDzePxodREGZITLUI7zIuTgXLC1YXBhpkO9mwLXiTjopijxhhudOWp7GPMfdrkuNk8zEPNFKK-o4fQS9Rbmwj4EokTjljCgYl8xZK3OjmBOS5lgky1Uf3qxHJjOBthzVM-ZZEz5PVLb5b_vwuuv9taXr-EO_3fUgZ8Fp6ywRQsV-BuO8Dy-7Zu9uGEPRC1uufB8ZY5YZp0kf3jZD_tf3ZCez0cxjzjR98m_dX8D2wdHhJJt8mH58CrdR5L7NFd-F3rJa2Wdwy1wsP9fV82DxPwEpfQBC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2CDcFeYMAQHYMZCZ4gWmM7_ngs7SoQpZoqpu0tchx7m1SaKWk3bU_7CfuN-yXYiRvKA0iIt0i--VDsax_73nsOwDvGYxsrkkWcJTSiWPNIKt6NtMHEc8M4xFAXCo_4eCyOj-VB0Dn1tTANP0R74OY9o56vvYOb89wGtgFPkum27fho0iXEDcv7sE4TyZxnrg8mw8NRG0hw-IAvg8we7ITcd_eEvdX7f1-VfkHNVcBarzjDJ__9rZvwOIBN1GtGx1O4Z2bP4NGyFrly10ED_fTqOVz30Li4MFNUJ4Xq6u7mtnepSoO-1fmWBgUq1hPX8MmtfTkaNGr2aL8sixL1vc5HXSWBvMDaFDk4jNozC-TD3-qHnRaXyMuBalXNUU_rRan01RYcDve_9z9HQZkh0sQhvMjaOOM0yWmca6E9302XKcmssILnGaaaZVYYlsQs87tdm2grqI4ZVlJJYhl5AWuzYmZeApIcW2k1zykT1BojMi2p5YJkvkiWyQ58WPZMqgNtuVfPmKZ1-BzLdPXfduB9a33e0HX8wW5n2clpcNoqxZzL2M1gjHXgbdvs3M3HUNTMFAtnI2KfZcYI7sDHusv_-p70aNKfOMyZJNv_Zr4LDw8Gw3T0Zfz1FWx4jfsmVXwH1ublwryGB_piflaVb8KA_wmyQP-u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Physics%E2%80%90Aware+Machine+Learning%E2%80%90Based+Dynamic+Error+Correction+Model+for+Improving+Streamflow+Forecast+Accuracy&rft.jtitle=Water+resources+research&rft.au=Roy%2C+Abhinanda&rft.au=Kasiviswanathan%2C+K.+S.&rft.au=Patidar%2C+Sandhya&rft.au=Adeloye%2C+Adebayo+J.&rft.date=2023-02-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=59&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022WR033318&rft.externalDBID=10.1029%252F2022WR033318&rft.externalDocID=WRCR26455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon