The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy
The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of can...
Saved in:
| Published in: | Immune network Vol. 14; no. 6; p. 265 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Korea (South)
01.12.2014
|
| Subjects: | |
| ISSN: | 1598-2629 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy. |
|---|---|
| AbstractList | The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy. The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy. |
| Author | Suh, Woong-Kyung Leung, Joanne |
| Author_xml | – sequence: 1 givenname: Joanne surname: Leung fullname: Leung, Joanne organization: Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada. ; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada – sequence: 2 givenname: Woong-Kyung surname: Suh fullname: Suh, Woong-Kyung organization: Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada. ; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada. ; Department of Medicine; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25550693$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kDtPwzAAhD0U0QfsTMgjS4LfbthK2kKlSizZI8d2WqPYCXEy5N_TiiKddCfdpxtuCWahDRaAJ4xShjF6dSElCLP0IpESwWdggXm2Togg2RwsY_xGSDAq-T2YE845EhldgKI4W5hvyTp5l3CvvGsm6ALchMElxejbHh68H4Mbpje487Y_uXCCeRu07YZ4JXN1yTeqHc62V930AO5q1UT7ePMVKPa7Iv9Mjl8fh3xzTDRliCeSc2aI1QRJamTGkK5NRmvNtLGMUoYRUSarENGmsgYrUcuKV9d2LRVXZAVe_ma7vv0ZbRxK76K2TaOCbcdYYsEwIxIxeUGfb-hYeWvKrnde9VP5fwT5BccTXuA |
| CitedBy_id | crossref_primary_10_1007_s12094_021_02659_w crossref_primary_10_1158_0008_5472_CAN_15_1879 crossref_primary_10_1080_2162402X_2017_1371896 crossref_primary_10_1080_07391102_2017_1355846 crossref_primary_10_1038_s41598_020_67894_7 crossref_primary_10_1007_s00280_017_3508_1 crossref_primary_10_3389_fonc_2021_600238 crossref_primary_10_1016_j_lfs_2022_120709 crossref_primary_10_1016_j_fsi_2019_10_041 crossref_primary_10_1016_j_intimp_2016_05_020 crossref_primary_10_1038_s41419_018_0796_2 crossref_primary_10_3892_or_2017_5730 crossref_primary_10_1007_s13277_016_5386_2 crossref_primary_10_1186_s12885_022_09294_w crossref_primary_10_1111_pcmr_12599 crossref_primary_10_1128_JVI_01677_19 crossref_primary_10_1016_j_jtho_2018_03_002 crossref_primary_10_1097_MD_0000000000003220 crossref_primary_10_2217_imt_2021_0093 crossref_primary_10_1177_1010428318815032 crossref_primary_10_3389_fnut_2018_00138 crossref_primary_10_1007_s00262_016_1950_2 crossref_primary_10_3892_ijo_2016_3393 crossref_primary_10_1016_S1473_3099_16_00078_5 crossref_primary_10_1016_j_intimp_2018_01_018 crossref_primary_10_1111_imr_12771 crossref_primary_10_3389_fimmu_2018_02582 crossref_primary_10_1158_1078_0432_CCR_18_2564 crossref_primary_10_1038_s41523_018_0095_1 crossref_primary_10_1002_ijc_31764 crossref_primary_10_1016_j_intimp_2023_110403 crossref_primary_10_1097_PAI_0000000000000817 crossref_primary_10_1002_ijc_30475 crossref_primary_10_1007_s10753_016_0437_9 crossref_primary_10_3390_ijms251910326 crossref_primary_10_1016_j_humpath_2016_06_011 crossref_primary_10_3892_ol_2018_8689 crossref_primary_10_3389_fimmu_2018_01125 crossref_primary_10_1097_CAD_0000000000000921 crossref_primary_10_1186_s12916_016_0635_1 crossref_primary_10_1186_s12885_022_09639_5 crossref_primary_10_1080_14728222_2018_1444753 crossref_primary_10_1016_j_jep_2016_06_019 crossref_primary_10_2217_imt_15_111 crossref_primary_10_3390_pharmaceutics12100955 crossref_primary_10_1016_j_intimp_2023_109827 crossref_primary_10_1159_000505756 crossref_primary_10_3390_life14121546 crossref_primary_10_3389_fimmu_2023_1199173 crossref_primary_10_1080_2162402X_2016_1207841 crossref_primary_10_2217_imt_2017_0120 crossref_primary_10_1186_s13287_016_0400_6 crossref_primary_10_1007_s12032_020_01433_2 crossref_primary_10_1186_s12885_023_10575_1 crossref_primary_10_1016_j_intimp_2018_03_020 crossref_primary_10_1016_j_bcp_2024_116712 crossref_primary_10_1016_j_jdermsci_2018_04_006 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.4110/in.2014.14.6.265 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| ExternalDocumentID | 25550693 |
| Genre | Journal Article Review |
| GroupedDBID | .UV 5-W 53G 8JR 8XY 9ZL ACYCR ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL DBRKI DIK E3Z EF. F5P GW5 HYE KQ8 KVFHK M48 MZR M~E NPM O5R O5S OK1 PGMZT RPM TDB ZZE 7X8 |
| ID | FETCH-LOGICAL-c3405-7554d2ec2073d7940cfd93fc4cde4334102ad9b02cdbed1a6f7b5b4cde87a5a2 |
| IEDL.DBID | 7X8 |
| ISSN | 1598-2629 |
| IngestDate | Thu Jul 10 19:09:52 EDT 2025 Thu Jan 02 22:17:05 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | CD28 family B7 family Immune evasion Co-stimulation Cancer immunotherapy Co-inhibition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3405-7554d2ec2073d7940cfd93fc4cde4334102ad9b02cdbed1a6f7b5b4cde87a5a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4275384 |
| PMID | 25550693 |
| PQID | 1641427047 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1641427047 pubmed_primary_25550693 |
| PublicationCentury | 2000 |
| PublicationDate | 20141201 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 20141201 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Korea (South) |
| PublicationPlace_xml | – name: Korea (South) |
| PublicationTitle | Immune network |
| PublicationTitleAlternate | Immune Netw |
| PublicationYear | 2014 |
| References | 24691994 - Cancer Res. 2014 Apr 1;74(7):1933-44 19724910 - Int J Oncol. 2009 Oct;35(4):741-9 23716685 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9879-84 9707601 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10067-71 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54 19528259 - J Exp Med. 2009 Jul 6;206(7):1495-503 15878339 - Exp Cell Res. 2005 May 15;306(1):128-41 24690569 - Clin Pharmacol Ther. 2014 Aug;96(2):214-23 11343122 - Nature. 2001 Jan 4;409(6816):102-5 18650384 - Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10495-500 20385810 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7875-80 20143437 - Cancer. 2010 Apr 1;116(7):1757-66 12975453 - J Exp Med. 2003 Sep 15;198(6):851-62 15494491 - J Immunol. 2004 Nov 1;173(9):5445-50 21368758 - Nature. 2011 Mar 17;471(7338):377-81 23390376 - Cancer Immun. 2013;13:5 19544488 - Eur J Immunol. 2009 Jul;39(7):1754-64 24653632 - Chin J Cancer Res. 2014 Feb;26(1):104-11 12826605 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372-7 20035626 - BMC Cancer. 2009 Dec 26;9:463 16489649 - World J Gastroenterol. 2006 Jan 21;12(3):457-9 15682454 - Eur J Immunol. 2005 Feb;35(2):428-38 21127709 - Clin Dev Immunol. 2010;2010:683875 15611321 - Int Immunol. 2005 Feb;17(2):133-44 24986688 - Blood. 2014 Aug 14;124(7):1070-80 23954143 - Trends Immunol. 2013 Nov;34(11):556-63 15960813 - Genome Biol. 2005;6(6):223 24486724 - Mol Immunol. 2014 May;59(1):46-54 20140740 - J Cancer Res Clin Oncol. 2010 Sep;136(9):1445-52 16914726 - Mol Cell Biol. 2006 Sep;26(17):6403-11 11910893 - Nat Rev Immunol. 2002 Feb;2(2):116-26 23986400 - Sci Transl Med. 2013 Aug 28;5(200):200ra116 20525897 - J Immunol. 2010 Jun 15;184(12):6563-8 14568939 - J Immunol. 2003 Nov 1;171(9):4650-4 16606670 - J Exp Med. 2006 Apr 17;203(4):883-95 15294965 - J Immunol. 2004 Aug 15;173(4):2500-6 21933959 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16723-8 23514593 - Retrovirology. 2013 Mar 20;10:31 15771580 - Annu Rev Immunol. 2005;23:515-48 19584290 - Cancer Res. 2009 Aug 1;69(15):6275-81 19423728 - Blood. 2009 Aug 20;114(8):1537-44 20460488 - Clin Cancer Res. 2010 May 15;16(10 ):2861-71 12920180 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10388-92 9223321 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8099-103 22461641 - Sci Transl Med. 2012 Mar 28;4(127):127ra37 22013483 - Clin Dev Immunol. 2011;2011:695834 16115907 - Clin Cancer Res. 2005 Aug 15;11(16):5708-17 19955922 - Int J Gynecol Cancer. 2009 Dec;19(9):1481-6 19336265 - Int Immunopharmacol. 2009 Jul;9(7-8):900-9 23295794 - J Clin Oncol. 2013 Feb 10;31(5):616-22 19737784 - Int Immunol. 2009 Oct;21(10):1105-11 12925852 - Nat Immunol. 2003 Sep;4(9):899-906 23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44 18042703 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19458-63 9850053 - Cancer Res. 1998 Dec 1;58(23):5301-4 12939639 - Gene Ther. 2003 Sep;10(20):1728-34 15613700 - J Clin Oncol. 2005 Feb 1;23(4):741-50 10430624 - J Exp Med. 1999 Aug 2;190(3):355-66 20333377 - Cancer Immunol Immunother. 2010 Aug;59(8):1163-71 12810690 - J Exp Med. 2003 Jun 16;197(12):1721-30 15756008 - Clin Cancer Res. 2005 Mar 1;11(5):1842-8 9307290 - Cancer Res. 1997 Sep 15;57(18):4036-41 11224528 - Nat Immunol. 2001 Mar;2(3):269-74 11343123 - Nature. 2001 Jan 4;409(6816):105-9 19915142 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20371-6 16382236 - Nature. 2006 Feb 9;439(7077):682-7 16606666 - J Exp Med. 2006 Apr 17;203(4):871-81 12818165 - Immunity. 2003 Jun;18(6):849-61 20479064 - Clin Cancer Res. 2010 Jul 1;16(13):3485-94 24842267 - Breast Cancer Res Treat. 2014 Jul;146(1):15-24 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33 24292706 - J Clin Invest. 2014 Jan;124(1):99-110 20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23 16725184 - Gynecol Oncol. 2006 Nov;103(2):405-16 19001146 - Oncologist. 2008;13 Suppl 4:10-5 16611412 - Neoplasia. 2006 Mar;8(3):190-8 12091876 - Nat Med. 2002 Aug;8(8):793-800 19188168 - Clin Cancer Res. 2009 Feb 1;15(3):971-9 21098714 - Cancer Res. 2010 Dec 1;70(23):9581-90 21639810 - N Engl J Med. 2011 Jun 30;364(26):2517-26 12218188 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293-7 24777248 - Cancer Immunol Res. 2013 Jul;1(1):32-42 22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65 15701862 - Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):728-34 23686485 - J Immunol. 2013 Jun 15;190(12):6651-61 15568026 - Nat Immunol. 2005 Jan;6(1):90-8 19915147 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20429-34 23722540 - Cancer Res. 2013 Aug 1;73(15):4820-9 17686830 - Cancer Res. 2007 Aug 15;67(16):7893-900 23455497 - J Immunol. 2013 Apr 1;190(7):3806-14 21708958 - Cancer Res. 2011 Aug 15;71(16):5445-54 18818309 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14987-92 19109567 - Blood. 2009 Feb 19;113(8):1759-67 16970282 - Cell Transplant. 2006;15(5):399-410 22437870 - Nat Rev Cancer. 2012 Mar 22;12(4):252-64 22108823 - Cancer Res. 2012 Jan 15;72(2):430-9 12816995 - J Immunol. 2003 Jul 1;171(1):166-74 20516446 - J Clin Oncol. 2010 Jul 1;28(19):3167-75 |
| References_xml | – reference: 21933959 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16723-8 – reference: 9850053 - Cancer Res. 1998 Dec 1;58(23):5301-4 – reference: 9307290 - Cancer Res. 1997 Sep 15;57(18):4036-41 – reference: 24486724 - Mol Immunol. 2014 May;59(1):46-54 – reference: 20333377 - Cancer Immunol Immunother. 2010 Aug;59(8):1163-71 – reference: 21708958 - Cancer Res. 2011 Aug 15;71(16):5445-54 – reference: 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33 – reference: 21368758 - Nature. 2011 Mar 17;471(7338):377-81 – reference: 19001146 - Oncologist. 2008;13 Suppl 4:10-5 – reference: 20460488 - Clin Cancer Res. 2010 May 15;16(10 ):2861-71 – reference: 15613700 - J Clin Oncol. 2005 Feb 1;23(4):741-50 – reference: 15701862 - Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):728-34 – reference: 10430624 - J Exp Med. 1999 Aug 2;190(3):355-66 – reference: 20516446 - J Clin Oncol. 2010 Jul 1;28(19):3167-75 – reference: 24691994 - Cancer Res. 2014 Apr 1;74(7):1933-44 – reference: 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54 – reference: 16970282 - Cell Transplant. 2006;15(5):399-410 – reference: 16606666 - J Exp Med. 2006 Apr 17;203(4):871-81 – reference: 16115907 - Clin Cancer Res. 2005 Aug 15;11(16):5708-17 – reference: 17686830 - Cancer Res. 2007 Aug 15;67(16):7893-900 – reference: 15960813 - Genome Biol. 2005;6(6):223 – reference: 12091876 - Nat Med. 2002 Aug;8(8):793-800 – reference: 19528259 - J Exp Med. 2009 Jul 6;206(7):1495-503 – reference: 15611321 - Int Immunol. 2005 Feb;17(2):133-44 – reference: 9223321 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8099-103 – reference: 23986400 - Sci Transl Med. 2013 Aug 28;5(200):200ra116 – reference: 15494491 - J Immunol. 2004 Nov 1;173(9):5445-50 – reference: 21127709 - Clin Dev Immunol. 2010;2010:683875 – reference: 20385810 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7875-80 – reference: 24690569 - Clin Pharmacol Ther. 2014 Aug;96(2):214-23 – reference: 22013483 - Clin Dev Immunol. 2011;2011:695834 – reference: 12826605 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372-7 – reference: 16725184 - Gynecol Oncol. 2006 Nov;103(2):405-16 – reference: 16606670 - J Exp Med. 2006 Apr 17;203(4):883-95 – reference: 15756008 - Clin Cancer Res. 2005 Mar 1;11(5):1842-8 – reference: 24292706 - J Clin Invest. 2014 Jan;124(1):99-110 – reference: 21098714 - Cancer Res. 2010 Dec 1;70(23):9581-90 – reference: 12925852 - Nat Immunol. 2003 Sep;4(9):899-906 – reference: 22108823 - Cancer Res. 2012 Jan 15;72(2):430-9 – reference: 16914726 - Mol Cell Biol. 2006 Sep;26(17):6403-11 – reference: 19915147 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20429-34 – reference: 11224528 - Nat Immunol. 2001 Mar;2(3):269-74 – reference: 11910893 - Nat Rev Immunol. 2002 Feb;2(2):116-26 – reference: 11343122 - Nature. 2001 Jan 4;409(6816):102-5 – reference: 16382236 - Nature. 2006 Feb 9;439(7077):682-7 – reference: 21639810 - N Engl J Med. 2011 Jun 30;364(26):2517-26 – reference: 24842267 - Breast Cancer Res Treat. 2014 Jul;146(1):15-24 – reference: 20479064 - Clin Cancer Res. 2010 Jul 1;16(13):3485-94 – reference: 19724910 - Int J Oncol. 2009 Oct;35(4):741-9 – reference: 23716685 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9879-84 – reference: 19955922 - Int J Gynecol Cancer. 2009 Dec;19(9):1481-6 – reference: 19915142 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20371-6 – reference: 24653632 - Chin J Cancer Res. 2014 Feb;26(1):104-11 – reference: 15878339 - Exp Cell Res. 2005 May 15;306(1):128-41 – reference: 20143437 - Cancer. 2010 Apr 1;116(7):1757-66 – reference: 23954143 - Trends Immunol. 2013 Nov;34(11):556-63 – reference: 18650384 - Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10495-500 – reference: 19188168 - Clin Cancer Res. 2009 Feb 1;15(3):971-9 – reference: 18042703 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19458-63 – reference: 15682454 - Eur J Immunol. 2005 Feb;35(2):428-38 – reference: 16611412 - Neoplasia. 2006 Mar;8(3):190-8 – reference: 20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23 – reference: 20525897 - J Immunol. 2010 Jun 15;184(12):6563-8 – reference: 15294965 - J Immunol. 2004 Aug 15;173(4):2500-6 – reference: 22437870 - Nat Rev Cancer. 2012 Mar 22;12(4):252-64 – reference: 11343123 - Nature. 2001 Jan 4;409(6816):105-9 – reference: 12920180 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10388-92 – reference: 23455497 - J Immunol. 2013 Apr 1;190(7):3806-14 – reference: 22461641 - Sci Transl Med. 2012 Mar 28;4(127):127ra37 – reference: 22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65 – reference: 12939639 - Gene Ther. 2003 Sep;10(20):1728-34 – reference: 19336265 - Int Immunopharmacol. 2009 Jul;9(7-8):900-9 – reference: 20140740 - J Cancer Res Clin Oncol. 2010 Sep;136(9):1445-52 – reference: 24986688 - Blood. 2014 Aug 14;124(7):1070-80 – reference: 9707601 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10067-71 – reference: 24777248 - Cancer Immunol Res. 2013 Jul;1(1):32-42 – reference: 23514593 - Retrovirology. 2013 Mar 20;10:31 – reference: 12218188 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293-7 – reference: 15771580 - Annu Rev Immunol. 2005;23:515-48 – reference: 19423728 - Blood. 2009 Aug 20;114(8):1537-44 – reference: 23390376 - Cancer Immun. 2013;13:5 – reference: 19584290 - Cancer Res. 2009 Aug 1;69(15):6275-81 – reference: 15568026 - Nat Immunol. 2005 Jan;6(1):90-8 – reference: 20035626 - BMC Cancer. 2009 Dec 26;9:463 – reference: 19544488 - Eur J Immunol. 2009 Jul;39(7):1754-64 – reference: 18818309 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14987-92 – reference: 16489649 - World J Gastroenterol. 2006 Jan 21;12(3):457-9 – reference: 14568939 - J Immunol. 2003 Nov 1;171(9):4650-4 – reference: 23722540 - Cancer Res. 2013 Aug 1;73(15):4820-9 – reference: 23686485 - J Immunol. 2013 Jun 15;190(12):6651-61 – reference: 12975453 - J Exp Med. 2003 Sep 15;198(6):851-62 – reference: 12816995 - J Immunol. 2003 Jul 1;171(1):166-74 – reference: 19109567 - Blood. 2009 Feb 19;113(8):1759-67 – reference: 12818165 - Immunity. 2003 Jun;18(6):849-61 – reference: 12810690 - J Exp Med. 2003 Jun 16;197(12):1721-30 – reference: 23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44 – reference: 19737784 - Int Immunol. 2009 Oct;21(10):1105-11 – reference: 23295794 - J Clin Oncol. 2013 Feb 10;31(5):616-22 |
| SSID | ssj0064375 |
| Score | 1.8924896 |
| SecondaryResourceType | review_article |
| Snippet | The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 265 |
| Title | The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25550693 https://www.proquest.com/docview/1641427047 |
| Volume | 14 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1FeMhKr28R24pgFlUAFA1WHDN0ix3akDKSlaZH67zknKUxISCxZYkvW-buH7-z7ELrzsshKPwfwMqUJt9IS5Wc5yQIhQg0O3oSqJpsQo1E0mchxm3Cr2muVa5tYG2oz1S5H3oew3udUeFw8zD6IY41y1dWWQmMTdRiEMg7VYvJdRXA1qaDulyoBDSGVTZmSg8frF673qc_BUPTCHg2D3wPM2tEM9_-7xAO014aYeNBg4hBt2PII7TSkk6tjlAAycPxEI_IocMN7gYsSD8pFQZLl-3SOX-s3I4vVPXYpK8dihOPmdWPlRsYOKO2o9v3W6gQlw-ckfiEttwLRDGI0IiCMMNRqCipuQCc9nRvJcs21sZyBa_OoMjLzqDaZNb4Kc5EFmfsbCRUoeoq2ymlpzxGmbqYfhXB0MtxETPE8UJJFysLuU5F30e1aWilA19UjVGmnyyr9kVcXnTUiT2dNj40UTjqBF0p28YfZl2jX7WVzyeQKdXJQXHuNtvXnoqjmNzUm4Dsav30BsLzAEg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+CD28-B7+Family+in+Anti-Tumor+Immunity%3A+Emerging+Concepts+in+Cancer+Immunotherapy&rft.jtitle=Immune+network&rft.au=Leung%2C+Joanne&rft.au=Suh%2C+Woong-Kyung&rft.date=2014-12-01&rft.issn=1598-2629&rft.volume=14&rft.issue=6&rft.spage=265&rft_id=info:doi/10.4110%2Fin.2014.14.6.265&rft_id=info%3Apmid%2F25550693&rft_id=info%3Apmid%2F25550693&rft.externalDocID=25550693 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2629&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2629&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2629&client=summon |