Hidden Markov Model-Based Encoding for Time-Correlated IoT Sources
As the use of Internet of Things (IoT) devices for monitoring purposes becomes ubiquitous, the efficiency of sensor communication is a major issue for the modern Internet. Channel coding is less efficient for extremely short packets, and traditional techniques that rely on source compression require...
Saved in:
| Published in: | IEEE communications letters Vol. 25; no. 5; pp. 1463 - 1467 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1089-7798, 1558-2558 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As the use of Internet of Things (IoT) devices for monitoring purposes becomes ubiquitous, the efficiency of sensor communication is a major issue for the modern Internet. Channel coding is less efficient for extremely short packets, and traditional techniques that rely on source compression require extensive signaling or pre-existing knowledge of the source dynamics. In this work, we propose an encoding and decoding scheme that learns source dynamics online using a Hidden Markov Model (HMM), puncturing a short packet code to outperform existing compression-based approaches. Our approach shows significant performance improvements for sources that are highly correlated in time, with no additional complexity on the sender side. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1089-7798 1558-2558 |
| DOI: | 10.1109/LCOMM.2020.3044210 |