Hidden Markov Model-Based Encoding for Time-Correlated IoT Sources

As the use of Internet of Things (IoT) devices for monitoring purposes becomes ubiquitous, the efficiency of sensor communication is a major issue for the modern Internet. Channel coding is less efficient for extremely short packets, and traditional techniques that rely on source compression require...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE communications letters Ročník 25; číslo 5; s. 1463 - 1467
Hlavní autoři: Chandak, Siddharth, Chiariotti, Federico, Popovski, Petar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-7798, 1558-2558
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As the use of Internet of Things (IoT) devices for monitoring purposes becomes ubiquitous, the efficiency of sensor communication is a major issue for the modern Internet. Channel coding is less efficient for extremely short packets, and traditional techniques that rely on source compression require extensive signaling or pre-existing knowledge of the source dynamics. In this work, we propose an encoding and decoding scheme that learns source dynamics online using a Hidden Markov Model (HMM), puncturing a short packet code to outperform existing compression-based approaches. Our approach shows significant performance improvements for sources that are highly correlated in time, with no additional complexity on the sender side.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.3044210