Newton’s method for concave operators with resolvent positive derivatives in ordered Banach spaces
We prove a non-local convergence result for Newton’s method applied to a class of nonlinear equations in ordered real Banach spaces. The key tools in our approach are special notions of concavity and the spectral theory of resolvent positive operators.
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 363; s. 43 - 64 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
01.04.2003
Elsevier Science |
| Témata: | |
| ISSN: | 0024-3795, 1873-1856 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove a non-local convergence result for Newton’s method applied to a class of nonlinear equations in ordered real Banach spaces. The key tools in our approach are special notions of concavity and the spectral theory of resolvent positive operators. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/S0024-3795(02)00328-2 |