A primal–dual approximation algorithm for the survivable network design problem in hypergraphs
Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function r : 2 V→ Z + , where V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set S⊆ V, there are at least r( S) hyperedges that have at least one but no...
Uložené v:
| Vydané v: | Discrete Applied Mathematics Ročník 126; číslo 2; s. 275 - 289 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Lausanne
Elsevier B.V
15.03.2003
Amsterdam Elsevier New York, NY |
| Predmet: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function
r
:
2
V→
Z
+
, where
V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set
S⊆
V, there are at least
r(
S) hyperedges that have at least one but no all endpoints in
S. This problem captures a hypergraph generalization of the survivable network design problem (SNDP), and also the element connectivity problem (ECP). We present a primal–dual algorithm with a performance guarantee of
d
max
+
H(r
max
)
, where
d
max
+ is the maximum degree of hyperedges of positive costs,
r
max
=
max
S
r(S)
, and
H(k)=1+
1
2
+⋯+
1
k
. In particular, our result contains a
2
H(r
max
)
-approximation algorithm for ECP, which gives an independent and complete proof for the result first obtained by Jain et al. (Proceedings of the SODA, 1999, p. 484–489). |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/S0166-218X(02)00201-9 |