A primal–dual approximation algorithm for the survivable network design problem in hypergraphs

Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function r : 2 V→ Z + , where V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set S⊆ V, there are at least r( S) hyperedges that have at least one but no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics Jg. 126; H. 2; S. 275 - 289
Hauptverfasser: Zhao, Liang, Nagamochi, Hiroshi, Ibaraki, Toshihide
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Lausanne Elsevier B.V 15.03.2003
Amsterdam Elsevier
New York, NY
Schlagworte:
ISSN:0166-218X, 1872-6771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function r : 2 V→ Z + , where V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set S⊆ V, there are at least r( S) hyperedges that have at least one but no all endpoints in S. This problem captures a hypergraph generalization of the survivable network design problem (SNDP), and also the element connectivity problem (ECP). We present a primal–dual algorithm with a performance guarantee of d max + H(r max ) , where d max + is the maximum degree of hyperedges of positive costs, r max = max S r(S) , and H(k)=1+ 1 2 +⋯+ 1 k . In particular, our result contains a 2 H(r max ) -approximation algorithm for ECP, which gives an independent and complete proof for the result first obtained by Jain et al. (Proceedings of the SODA, 1999, p. 484–489).
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(02)00201-9