A primal–dual approximation algorithm for the survivable network design problem in hypergraphs

Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function r : 2 V→ Z + , where V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set S⊆ V, there are at least r( S) hyperedges that have at least one but no...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics Vol. 126; no. 2; pp. 275 - 289
Main Authors: Zhao, Liang, Nagamochi, Hiroshi, Ibaraki, Toshihide
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 15.03.2003
Amsterdam Elsevier
New York, NY
Subjects:
ISSN:0166-218X, 1872-6771
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function r : 2 V→ Z + , where V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set S⊆ V, there are at least r( S) hyperedges that have at least one but no all endpoints in S. This problem captures a hypergraph generalization of the survivable network design problem (SNDP), and also the element connectivity problem (ECP). We present a primal–dual algorithm with a performance guarantee of d max + H(r max ) , where d max + is the maximum degree of hyperedges of positive costs, r max = max S r(S) , and H(k)=1+ 1 2 +⋯+ 1 k . In particular, our result contains a 2 H(r max ) -approximation algorithm for ECP, which gives an independent and complete proof for the result first obtained by Jain et al. (Proceedings of the SODA, 1999, p. 484–489).
AbstractList Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function r : 2 V→ Z + , where V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set S⊆ V, there are at least r( S) hyperedges that have at least one but no all endpoints in S. This problem captures a hypergraph generalization of the survivable network design problem (SNDP), and also the element connectivity problem (ECP). We present a primal–dual algorithm with a performance guarantee of d max + H(r max ) , where d max + is the maximum degree of hyperedges of positive costs, r max = max S r(S) , and H(k)=1+ 1 2 +⋯+ 1 k . In particular, our result contains a 2 H(r max ) -approximation algorithm for ECP, which gives an independent and complete proof for the result first obtained by Jain et al. (Proceedings of the SODA, 1999, p. 484–489).
Author Nagamochi, Hiroshi
Zhao, Liang
Ibaraki, Toshihide
Author_xml – sequence: 1
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  email: zhao@amp.i.kyoto-u.ac.jp
  organization: Graduate School of Informatics, Department of Applied Mathematics and Physics, Kyoto University, Kyoto, 606-8501, Japan
– sequence: 2
  givenname: Hiroshi
  surname: Nagamochi
  fullname: Nagamochi, Hiroshi
  email: naga@ics.tut.ac.jp
  organization: Toyohashi University of Technology, Department of Information and Computer Sciences, Toyohashi, Aichi, 441-8580, Japan
– sequence: 3
  givenname: Toshihide
  surname: Ibaraki
  fullname: Ibaraki, Toshihide
  email: ibaraki@amp.i.kyoto-u.ac.jp
  organization: Graduate School of Informatics, Department of Applied Mathematics and Physics, Kyoto University, Kyoto, 606-8501, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14416169$$DView record in Pascal Francis
BookMark eNqFkMFqGzEQhkVIIY6bRyjoEmgPm2i0u9qYHEowaRMw9NAWclPH0sirZL1apLVT3_oOfcM-SdfrkkMvuYyY0f__w3yn7LgNLTH2DsQFCFCXX4eiMglXD--F_CCEFJDNjtgEriqZqaqCYzZ5kZyw05QehRAwdBP244Z30a-x-fPrt91gw7HrYvg5THofWo7NKkTf12vuQuR9TTxt4tZvcdkQb6l_DvGJW0p-1Q45YZiuuW95vesoriJ2dXrL3jhsEp39e6fs-6fbb_O7bPHl8_38ZpGZPJ_1ma2KShlTLi1UOVI5E8IAllY6rJQD54rclTD8V2RVjkgoyZq8IGlBLhXlU3Z-yO0wGWxcxNb4pMfj4k5DUYACNRt01wediSGlSE4b34_H9hF9o0HoPVQ9QtV7YlpIPULVe3f5n_tlwSu-jwcfDQi2nqJOxlNryPpIptc2-FcS_gK9mZU2
CODEN DAMADU
CitedBy_id crossref_primary_10_1016_j_jcss_2005_05_006
Cites_doi 10.1007/s004930170004
10.1007/BF01299747
10.1007/s00453-002-0970-9
10.1109/SFCS.2001.959908
10.1007/BF02523686
10.1145/48014.61051
10.1137/S0097539793242618
10.4153/CJM-1956-045-5
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
2003 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science B.V.
– notice: 2003 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/S0166-218X(02)00201-9
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6771
EndPage 289
ExternalDocumentID 14416169
10_1016_S0166_218X_02_00201_9
S0166218X02002019
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
AI.
ALMA_UNASSIGNED_HOLDINGS
FA8
FDB
OAUVE
VH1
WUQ
AAYXX
CITATION
IQODW
ID FETCH-LOGICAL-c339t-d7476cc5bd173ae5900c1a5d2fa76f1ff43f51c5b7ed63aaea2edc34e2d12b6e3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000180274300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Wed Apr 02 07:20:20 EDT 2025
Sat Nov 29 07:24:48 EST 2025
Tue Nov 18 22:41:10 EST 2025
Sat Apr 29 22:44:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hypergraph
Graph
Approximation algorithm
Survivable network design problem
Primal dual method
Vertex
Costs
Minimum
Existence theorem
Complete
Functions
Graph theory
Elements
Generalization
Survival network design problem
Survival
Result
Numerical approximation
Design
Maximum
Algorithm performance
Hypermodular function
Network
Problem
Performance
1999
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-d7476cc5bd173ae5900c1a5d2fa76f1ff43f51c5b7ed63aaea2edc34e2d12b6e3
OpenAccessLink https://dx.doi.org/10.1016/S0166-218X(02)00201-9
PageCount 15
ParticipantIDs pascalfrancis_primary_14416169
crossref_citationtrail_10_1016_S0166_218X_02_00201_9
crossref_primary_10_1016_S0166_218X_02_00201_9
elsevier_sciencedirect_doi_10_1016_S0166_218X_02_00201_9
PublicationCentury 2000
PublicationDate 2003-03-15
PublicationDateYYYYMMDD 2003-03-15
PublicationDate_xml – month: 03
  year: 2003
  text: 2003-03-15
  day: 15
PublicationDecade 2000
PublicationPlace Lausanne
Amsterdam
New York, NY
PublicationPlace_xml – name: Amsterdam
– name: Lausanne
– name: New York, NY
PublicationTitle Discrete Applied Mathematics
PublicationYear 2003
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ford, Fulkerson (BIB2) 1956; 8
M.X. Goemans, A.V. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, D.P. Williamson, Improved approximation algorithms for network design problems, in: Proceedings of the SODA 1994, pp. 223–232.
L. Fleischer, K. Jain, D.P. Williamson, An iterative rounding 2-approximation algorithms for the element connectivity problem, in: Proceedings of FOCS 2001.
Ravi, Williamson (BIB10) 1997; 18
Miller (BIB9) 1998
Williamson, Goemans, Mihail, Vazirani (BIB14) 1995; 15
Goldberg, Tarjan (BIB6) 1988; 35
K. Jain, I. Măndoiu, V.V. Vazirani, D.P. Williamson, A primal–dual schema based approximation algorithm for the element connectivity problem, in: Proceedings of the SODA 1999, pp. 484–489.
Jain (BIB7) 2001; 21
R. Ravi, D.P. Williamson, Erratum: an approximation algorithm for minimum-cost vertex-connectivity problems, manuscript, July 2001.
D.P. Williamson, The primal–dual method for approximation algorithms, Math. Program., to appear.
K. Takeshita, T. Fujito, T. Watanabe, On primal–dual approximation algorithms for several hypergraph problems, IPSJ Math. Model. Problem Solving 23 (3) (1999) 13–18 (in Japanese).
L. Zhao, H. Nagamochi, T. Ibaraki, A note on approximating the survivable network design problem in hypergraphs, IEICE Trans. Inform. Systems E85-D (2) (2002), 322–326.
Goemans, Williamson (BIB3) 1995; 24
Goemans, Williamson (BIB4) 1997
Williamson (10.1016/S0166-218X(02)00201-9_BIB14) 1995; 15
Goemans (10.1016/S0166-218X(02)00201-9_BIB3) 1995; 24
Goldberg (10.1016/S0166-218X(02)00201-9_BIB6) 1988; 35
10.1016/S0166-218X(02)00201-9_BIB8
Ravi (10.1016/S0166-218X(02)00201-9_BIB10) 1997; 18
10.1016/S0166-218X(02)00201-9_BIB15
Miller (10.1016/S0166-218X(02)00201-9_BIB9) 1998
Ford (10.1016/S0166-218X(02)00201-9_BIB2) 1956; 8
10.1016/S0166-218X(02)00201-9_BIB12
10.1016/S0166-218X(02)00201-9_BIB11
10.1016/S0166-218X(02)00201-9_BIB13
Goemans (10.1016/S0166-218X(02)00201-9_BIB4) 1997
10.1016/S0166-218X(02)00201-9_BIB5
10.1016/S0166-218X(02)00201-9_BIB1
Jain (10.1016/S0166-218X(02)00201-9_BIB7) 2001; 21
References_xml – volume: 8
  start-page: 399
  year: 1956
  end-page: 404
  ident: BIB2
  article-title: Maximal flow through a network
  publication-title: Canad. J. Math.
– reference: D.P. Williamson, The primal–dual method for approximation algorithms, Math. Program., to appear.
– volume: 15
  start-page: 435
  year: 1995
  end-page: 454
  ident: BIB14
  article-title: A primal–dual approximation algorithm for generalized Steiner network problems
  publication-title: Combinatorica
– reference: L. Zhao, H. Nagamochi, T. Ibaraki, A note on approximating the survivable network design problem in hypergraphs, IEICE Trans. Inform. Systems E85-D (2) (2002), 322–326.
– year: 1998
  ident: BIB9
  publication-title: Multicast Networking and Applications
– reference: R. Ravi, D.P. Williamson, Erratum: an approximation algorithm for minimum-cost vertex-connectivity problems, manuscript, July 2001.
– reference: L. Fleischer, K. Jain, D.P. Williamson, An iterative rounding 2-approximation algorithms for the element connectivity problem, in: Proceedings of FOCS 2001.
– start-page: 144
  year: 1997
  end-page: 191
  ident: BIB4
  article-title: The primal–dual method for approximation algorithms and its application to network design problems
  publication-title: Approximation Algorithms for NP-hard Problems, PWS
– reference: K. Jain, I. Măndoiu, V.V. Vazirani, D.P. Williamson, A primal–dual schema based approximation algorithm for the element connectivity problem, in: Proceedings of the SODA 1999, pp. 484–489.
– volume: 35
  start-page: 921
  year: 1988
  end-page: 940
  ident: BIB6
  article-title: A new approach to the maximum flow problem
  publication-title: J. ACM
– volume: 18
  start-page: 21
  year: 1997
  end-page: 43
  ident: BIB10
  article-title: An approximation algorithm for minimum-cost vertex-connectivity problems
  publication-title: Algorithmica
– volume: 24
  start-page: 296
  year: 1995
  end-page: 317
  ident: BIB3
  article-title: A general approximation technique for constrained forest problems
  publication-title: SIAM J. Comput.
– reference: K. Takeshita, T. Fujito, T. Watanabe, On primal–dual approximation algorithms for several hypergraph problems, IPSJ Math. Model. Problem Solving 23 (3) (1999) 13–18 (in Japanese).
– volume: 21
  start-page: 39
  year: 2001
  end-page: 60
  ident: BIB7
  article-title: A factor 2 approximation algorithm for the generalized Steiner network problem
  publication-title: Combinatorica
– reference: M.X. Goemans, A.V. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, D.P. Williamson, Improved approximation algorithms for network design problems, in: Proceedings of the SODA 1994, pp. 223–232.
– volume: 21
  start-page: 39
  issue: 1
  year: 2001
  ident: 10.1016/S0166-218X(02)00201-9_BIB7
  article-title: A factor 2 approximation algorithm for the generalized Steiner network problem
  publication-title: Combinatorica
  doi: 10.1007/s004930170004
– ident: 10.1016/S0166-218X(02)00201-9_BIB8
– year: 1998
  ident: 10.1016/S0166-218X(02)00201-9_BIB9
– start-page: 144
  year: 1997
  ident: 10.1016/S0166-218X(02)00201-9_BIB4
  article-title: The primal–dual method for approximation algorithms and its application to network design problems
– ident: 10.1016/S0166-218X(02)00201-9_BIB12
– volume: 15
  start-page: 435
  issue: 3
  year: 1995
  ident: 10.1016/S0166-218X(02)00201-9_BIB14
  article-title: A primal–dual approximation algorithm for generalized Steiner network problems
  publication-title: Combinatorica
  doi: 10.1007/BF01299747
– ident: 10.1016/S0166-218X(02)00201-9_BIB15
– ident: 10.1016/S0166-218X(02)00201-9_BIB11
  doi: 10.1007/s00453-002-0970-9
– ident: 10.1016/S0166-218X(02)00201-9_BIB1
  doi: 10.1109/SFCS.2001.959908
– ident: 10.1016/S0166-218X(02)00201-9_BIB13
– volume: 18
  start-page: 21
  year: 1997
  ident: 10.1016/S0166-218X(02)00201-9_BIB10
  article-title: An approximation algorithm for minimum-cost vertex-connectivity problems
  publication-title: Algorithmica
  doi: 10.1007/BF02523686
– ident: 10.1016/S0166-218X(02)00201-9_BIB5
– volume: 35
  start-page: 921
  year: 1988
  ident: 10.1016/S0166-218X(02)00201-9_BIB6
  article-title: A new approach to the maximum flow problem
  publication-title: J. ACM
  doi: 10.1145/48014.61051
– volume: 24
  start-page: 296
  issue: 2
  year: 1995
  ident: 10.1016/S0166-218X(02)00201-9_BIB3
  article-title: A general approximation technique for constrained forest problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793242618
– volume: 8
  start-page: 399
  year: 1956
  ident: 10.1016/S0166-218X(02)00201-9_BIB2
  article-title: Maximal flow through a network
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1956-045-5
SSID ssj0001218
ssj0000186
ssj0006644
Score 1.6335243
Snippet Given a hypergraph with nonnegative costs on hyperedges, and a weakly supermodular function r : 2 V→ Z + , where V is the vertex set, we consider the problem...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 275
SubjectTerms Approximation algorithm
Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph
Graph theory
Hypergraph
Mathematics
Primal dual method
Sciences and techniques of general use
Survivable network design problem
Title A primal–dual approximation algorithm for the survivable network design problem in hypergraphs
URI https://dx.doi.org/10.1016/S0166-218X(02)00201-9
Volume 126
WOSCitedRecordID wos000180274300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6771
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001218
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKl8MihHiK5bHygQMoCiR24sTHsCy0PAqCIlUcNnKcmEbqZqu2W_U_8KcZx26SglDhwCWKnDixPF88nyfzQOgJyWnItaFKBhI2KH4QujwLMldxHVUVkSyPZV1sIhqN4smEf-r1fmxjYdazqKrizYbP_6uooQ2ErUNn_0HczUOhAc5B6HAEscPxrwSfOHOdQWLm1lFWdc7wTWkCFB0x-36xKFfT88a7cHkJa8W6jp-qjEe4k9dOHY4tNaMNIlPYrC7q1NbLLpl9VcKaA6TbEZbKnjc5YBum_n6YjN443wbJx8bsnOg0KieDYa31StDS07IB6Mvkc_KuvjLW7dMyL3bsElQ7ZpnITGMss5q9a7tkzAVGMdlZfE28vEUZcWl3MTU1VaxeJqbU0G9LvrE-fGmeDsRcJ5Xlmgj7Lm_13Pbf_i_qr3FK1FtL5jN-BR3Am2Ovjw6S4enkbScbmU61d7i137W_q4C2BTaJvBlDGyr2oh3YU488s4P6Ewm6PhdL-DSVqanSITrjm-iG3aHgxCDrFuoV1W107UMr2jvoLMEdjOEdjOEGYxgwhqEXbjGGLcawwRi2GMNlhTsYu4u-vj4dnwxcW6jDlZTylZvDnpRJGWa5H1FR6EK00hdhTpSImPKVCqgKfbgeFTmjQhSCFLmkQUFyn2SsoPdQv7qoivsIRyqi3IPbuZBBKGmsVCQ8FWfAJCPKvCMUbGculTaLvS6mMks77oqMpXrCU4-k9YSn_Ag9b7rNTRqXfR3irVhSy0UNx0wBd_u6Hu-IsX2hBdiDfTc8RIftF_UI9VeLy-IxuirXq3K5OLaw_AkE3K1e
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+primal-dual+approximation+algorithm+for+the+survivable+network+design+problem+in+hypergraphs&rft.jtitle=Discrete+applied+mathematics&rft.au=LIANG+ZHAO&rft.au=NAGAMOCHI%2C+Hiroshi&rft.au=IBARAKI%2C+Toshihide&rft.date=2003-03-15&rft.pub=Elsevier&rft.issn=0166-218X&rft.volume=126&rft.issue=2-3&rft.spage=275&rft.epage=289&rft_id=info:doi/10.1016%2FS0166-218X%2802%2900201-9&rft.externalDBID=n%2Fa&rft.externalDocID=14416169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon