Deep clustering with a Dynamic Autoencoder: From reconstruction towards centroids construction

In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static. The absence of concrete super...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural networks Ročník 130; s. 206 - 228
Hlavní autoři: Mrabah, Nairouz, Khan, Naimul Mefraz, Ksantini, Riadh, Lachiri, Zied
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2020
Témata:
ISSN:0893-6080, 1879-2782, 1879-2782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static. The absence of concrete supervision suggests that smooth dynamics should be integrated during the training process. Compared to classical static cost functions, dynamic objective functions allow to better make use of the gradual and uncertain knowledge acquired through pseudo-supervision. In this paper, we propose Dynamic Autoencoder (DynAE), a novel model for deep clustering that addresses a clustering–reconstruction trade-off, by gradually and smoothly eliminating the reconstruction objective function in favor of a construction one. Experimental evaluations on benchmark datasets show that our approach achieves state-of-the-art results compared to the most relevant deep clustering methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2020.07.005