Deep clustering with a Dynamic Autoencoder: From reconstruction towards centroids construction
In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static. The absence of concrete super...
Uloženo v:
| Vydáno v: | Neural networks Ročník 130; s. 206 - 228 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.10.2020
|
| Témata: | |
| ISSN: | 0893-6080, 1879-2782, 1879-2782 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static. The absence of concrete supervision suggests that smooth dynamics should be integrated during the training process. Compared to classical static cost functions, dynamic objective functions allow to better make use of the gradual and uncertain knowledge acquired through pseudo-supervision. In this paper, we propose Dynamic Autoencoder (DynAE), a novel model for deep clustering that addresses a clustering–reconstruction trade-off, by gradually and smoothly eliminating the reconstruction objective function in favor of a construction one. Experimental evaluations on benchmark datasets show that our approach achieves state-of-the-art results compared to the most relevant deep clustering methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0893-6080 1879-2782 1879-2782 |
| DOI: | 10.1016/j.neunet.2020.07.005 |