Bounds for parametric sequence comparison

We consider the problem of computing a global alignment between two or more sequences subject to varying mismatch and indel penalties. We prove a tight 3(n/2π) 2/3+O(n 1/3 log n) bound on the worst-case number of distinct optimum alignments for two sequences of length n as the parameters are varied....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 118; číslo 3; s. 181 - 198
Hlavní autoři: Fernández-Baca, David, Seppäläinen, Timo, Slutzki, Giora
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 15.05.2002
Amsterdam Elsevier
New York, NY
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of computing a global alignment between two or more sequences subject to varying mismatch and indel penalties. We prove a tight 3(n/2π) 2/3+O(n 1/3 log n) bound on the worst-case number of distinct optimum alignments for two sequences of length n as the parameters are varied. This refines a O( n 2/3) upper bound by Gusfield et al., answering a question posed by Pevzner and Waterman. Our lower bound requires an unbounded alphabet. For strings over a binary alphabet, we prove a Ω(n 1/2) lower bound. For the parametric global alignment of k⩾2 sequences under sum-of-pairs scoring we prove a 3(( k 2 )n/2π) 2/3+O(k 2/3n 1/3 log n) upper bound on the number of distinct optimality regions and a Ω(n 2/3) lower bound, partially answering a problem of Pevzner. Based on experimental evidence, we conjecture that for two random sequences, the number of optimality regions is approximately n with high probability.
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(01)00206-2