Pathwise convergence rates for numerical solutions of Markovian switching stochastic differential equations

This work develops numerical approximation algorithms for solutions of stochastic differential equations with Markovian switching. The existing numerical algorithms all use a discrete-time Markov chain for the approximation of the continuous-time Markov chain. In contrast, we generate the continuous...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear analysis: real world applications Ročník 13; číslo 3; s. 1170 - 1185
Hlavní autori: Nguyen, Son Luu, Yin, G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2012
Predmet:
ISSN:1468-1218, 1878-5719
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This work develops numerical approximation algorithms for solutions of stochastic differential equations with Markovian switching. The existing numerical algorithms all use a discrete-time Markov chain for the approximation of the continuous-time Markov chain. In contrast, we generate the continuous-time Markov chain directly, and then use its skeleton process in the approximation algorithm. Focusing on weak approximation, we take a re-embedding approach, and define the approximation and the solution to the switching stochastic differential equation on the same space. In our approximation, we use a sequence of independent and identically distributed (i.i.d.) random variables in lieu of the common practice of using Brownian increments. By virtue of the strong invariance principle, we ascertain rates of convergence in the pathwise sense for the weak approximation scheme.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2011.09.012