Two Expectation-Maximization algorithms for Boolean Factor Analysis
Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine learning researchers. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. In the present study, we...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 130; s. 83 - 97 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
23.04.2014
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine learning researchers. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. In the present study, we propose a general generative model of binary data for Boolean Factor Analysis and introduce two new Expectation-Maximization Boolean Factor Analysis algorithms which maximize the likelihood of a Boolean Factor Analysis solution. To show the maturity of our solutions we propose an informational measure of Boolean Factor Analysis efficiency. Using the so-called bars problem benchmark, we compare the efficiencies of the proposed algorithms to that of Dendritic Inhibition Neural Network, Maximal Causes Analysis, and Boolean Matrix Factorization. Last mentioned methods were taken as related methods as they are supposed to be the most efficient in bars problem benchmark. Then we discuss the peculiarities of the two methods we proposed and the three related methods in performing Boolean Factor Analysis. |
|---|---|
| AbstractList | Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine learning researchers. There are many approaches in the literature that try to solve this hitherto rather ill-defined task. In the present study, we propose a general generative model of binary data for Boolean Factor Analysis and introduce two new Expectation-Maximization Boolean Factor Analysis algorithms which maximize the likelihood of a Boolean Factor Analysis solution. To show the maturity of our solutions we propose an informational measure of Boolean Factor Analysis efficiency. Using the so-called bars problem benchmark, we compare the efficiencies of the proposed algorithms to that of Dendritic Inhibition Neural Network, Maximal Causes Analysis, and Boolean Matrix Factorization. Last mentioned methods were taken as related methods as they are supposed to be the most efficient in bars problem benchmark. Then we discuss the peculiarities of the two methods we proposed and the three related methods in performing Boolean Factor Analysis. |
| Author | Polyakov, Pavel Y. Husek, Dusan Frolov, Alexander A. |
| Author_xml | – sequence: 1 givenname: Alexander A. surname: Frolov fullname: Frolov, Alexander A. organization: Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5a, 117 485 Moscow, Russia – sequence: 2 givenname: Dusan surname: Husek fullname: Husek, Dusan email: dusan@cs.cas.cz organization: Institute of Computer Science, Academy of Science of the Czech Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8, Czech Republic – sequence: 3 givenname: Pavel Y. surname: Polyakov fullname: Polyakov, Pavel Y. organization: FEI VSB – TU Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic |
| BookMark | eNqFkE9LAzEUxINUsK1-Aw979LJr_nSzGw9CLa0Kipd6DsnbVFN2NzXZauunN3U9eVAYeDyYGZjfCA1a1xqEzgnOCCb8cp21ZguuySgmNMNReX6EhqQsaFrSkg_QEAuap5QReoJGIawxJgWhYohmyw-XzHcbA53qrGvTR7Wzjf38fhJVvzhvu9cmJCvnkxvnaqPaZKGgi--0VfU-2HCKjleqDubs547R82K-nN2lD0-397PpQwqMiS4lYsKgxAR4xXVZVFrxqgBF9YRoyrXAAoBpxsFEDwPgkGstWKkLMTFxCxuji753493b1oRONjaAqWvVGrcNkhSC0TKPU6P1qreCdyF4s5Jg-4GdV7aWBMsDObmWPTl5ICdxVJ7H8ORXeONto_z-v9h1HzORwbs1XgawpgVTWR_xysrZvwu-AJV6jSI |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0124088 crossref_primary_10_1016_j_neucom_2015_10_075 crossref_primary_10_1109_TNNLS_2015_2412686 crossref_primary_10_1109_ACCESS_2021_3107189 |
| Cites_doi | 10.1109/TNN.2009.2016090 10.1016/S0925-2312(02)00847-0 10.1109/TKDE.2008.53 10.1007/978-94-011-5014-9_12 10.1016/S0925-2312(02)00512-X 10.1007/978-3-540-77046-6_29 10.1109/TNN.2007.891664 10.1098/rstb.1971.0078 10.1016/j.neucom.2007.09.017 10.1162/089976602320264033 10.1016/j.neucom.2011.05.011 10.1016/j.neucom.2008.11.033 10.1111/j.2517-6161.1977.tb01600.x 10.1088/0954-898X/12/3/301 10.1017/S0033291700031470 10.1038/44565 10.1016/S0893-6080(99)00046-5 10.1162/neco.1995.7.1.51 10.1016/S0925-2312(01)00675-0 10.1016/j.neucom.2007.07.038 10.1017/S0033291700003585 10.1007/BF02331346 10.1016/j.jcss.2009.05.002 10.1098/rspb.1970.0040 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier B.V. |
| Copyright_xml | – notice: 2013 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.neucom.2012.02.055 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 97 |
| ExternalDocumentID | 10_1016_j_neucom_2012_02_055 S0925231213006954 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c339t-1943c801c6d6b87dba6d7ca2b41b26b909cc3b36ce01c3cc6c5bb938b794e1873 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333233200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sun Nov 09 12:44:45 EST 2025 Sat Nov 29 04:38:52 EST 2025 Tue Nov 18 21:16:28 EST 2025 Fri Feb 23 02:27:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimension reduction Binary Matrix Factorization Boolean Factor Analysis Binary data model Neural networks Bars problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-1943c801c6d6b87dba6d7ca2b41b26b909cc3b36ce01c3cc6c5bb938b794e1873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1793285092 |
| PQPubID | 23500 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1793285092 crossref_citationtrail_10_1016_j_neucom_2012_02_055 crossref_primary_10_1016_j_neucom_2012_02_055 elsevier_sciencedirect_doi_10_1016_j_neucom_2012_02_055 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-23 |
| PublicationDateYYYYMMDD | 2014-04-23 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hodge, Austin (bib23) 2002; 48 Weber, Scharfetter (bib3) 1984; 14 Frolov, Husek, Muraviev, Polyakov (bib29) 2007; 18 Foldiak (bib8) 1990; 64 Kussul (bib16) 1992 Kabán, Bingham (bib33) 2008; 71 Saund (bib1) 1995; 7 Oh, Kim, Pedrycz, Joo (bib24) 2011 Hoyer (bib19) 2004; 5 A.A. Frolov, D. Husek, H. Rezankova, V. Snasel, P. Polyakov, Clustering variables by classical approaches and neural network Boolean factor analysis, in: IEEE International Joint Conference on Neural Networks, IJCNN '08, pp. 3742–3746. Barlow (bib13) 1985 Spratling (bib9) 2006; 7 D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, P. Polyakov, Comparison of neural network boolean factor analysis method with some other dimension reduction methods on bars problem, in: Second International Conference on Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, vol. 4815, Springer, 2007, pp. 235–243. Belohlavek, Vychodil (bib12) 2010; 76 Hyvarinen, Raju (bib32) 2002; 49 Veiel (bib4) 1985; 15 Ganter, Wille, Wille (bib18) 1999 Barlow (bib14) 2001; 12 Snasel, Platos, Kromer, Husek, Frolov (bib26) 2007; 17 Spratling, Johnson (bib10) 2002; 14 Neal, Hinton (bib7) 1998; 89 Marr (bib15) 1970; 176 Liu, Zhou (bib27) 2011 Doya (bib22) 1999; 12 Miettinen, Mielikainen, Gionis, Das, Mannila (bib17) 2008; 20 Spratling, Johnson (bib11) 2003; 52 Stadlthanner, Theis, Lang, Puntonet, Gorriz (bib30) 2008; 71 Lee, Seung (bib20) 1999; 401 Lücke, Sahani (bib2) 2008; 9 Frolov, Husek, Polyakov (bib5) 2009; 20 Marr (bib21) 1971; 262 Zeng, Luo, Li (bib31) 2010; 73 Dempster, Laird, Rubin (bib6) 1977; 39 Kussul (10.1016/j.neucom.2012.02.055_bib16) 1992 Neal (10.1016/j.neucom.2012.02.055_bib7) 1998; 89 Hoyer (10.1016/j.neucom.2012.02.055_bib19) 2004; 5 Stadlthanner (10.1016/j.neucom.2012.02.055_bib30) 2008; 71 Zeng (10.1016/j.neucom.2012.02.055_bib31) 2010; 73 Dempster (10.1016/j.neucom.2012.02.055_bib6) 1977; 39 Snasel (10.1016/j.neucom.2012.02.055_bib26) 2007; 17 Belohlavek (10.1016/j.neucom.2012.02.055_bib12) 2010; 76 Ganter (10.1016/j.neucom.2012.02.055_bib18) 1999 Foldiak (10.1016/j.neucom.2012.02.055_bib8) 1990; 64 Liu (10.1016/j.neucom.2012.02.055_bib27) 2011 Lücke (10.1016/j.neucom.2012.02.055_bib2) 2008; 9 Oh (10.1016/j.neucom.2012.02.055_bib24) 2011 Weber (10.1016/j.neucom.2012.02.055_bib3) 1984; 14 Lee (10.1016/j.neucom.2012.02.055_bib20) 1999; 401 Veiel (10.1016/j.neucom.2012.02.055_bib4) 1985; 15 Barlow (10.1016/j.neucom.2012.02.055_bib14) 2001; 12 Hyvarinen (10.1016/j.neucom.2012.02.055_bib32) 2002; 49 Frolov (10.1016/j.neucom.2012.02.055_bib5) 2009; 20 Spratling (10.1016/j.neucom.2012.02.055_bib11) 2003; 52 Hodge (10.1016/j.neucom.2012.02.055_bib23) 2002; 48 Kabán (10.1016/j.neucom.2012.02.055_bib33) 2008; 71 Saund (10.1016/j.neucom.2012.02.055_bib1) 1995; 7 Marr (10.1016/j.neucom.2012.02.055_bib21) 1971; 262 10.1016/j.neucom.2012.02.055_bib28 Barlow (10.1016/j.neucom.2012.02.055_bib13) 1985 10.1016/j.neucom.2012.02.055_bib25 Doya (10.1016/j.neucom.2012.02.055_bib22) 1999; 12 Spratling (10.1016/j.neucom.2012.02.055_bib9) 2006; 7 Miettinen (10.1016/j.neucom.2012.02.055_bib17) 2008; 20 Spratling (10.1016/j.neucom.2012.02.055_bib10) 2002; 14 Marr (10.1016/j.neucom.2012.02.055_bib15) 1970; 176 Frolov (10.1016/j.neucom.2012.02.055_bib29) 2007; 18 |
| References_xml | – start-page: 37 year: 1985 end-page: 46 ident: bib13 article-title: Cerebral cortex as model builder publication-title: Models of the Visual Cortex – volume: 73 start-page: 684 year: 2010 end-page: 689 ident: bib31 article-title: An associative sparse coding neural network and applications publication-title: Neurocomputing – volume: 20 start-page: 1348 year: 2008 end-page: 1362 ident: bib17 article-title: The discrete basis problem publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 76 start-page: 3 year: 2010 end-page: 20 ident: bib12 article-title: Discovery of optimal factors in binary data via a novel method of matrix decomposition publication-title: Journal of Computer and System Sciences – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib20 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 12 start-page: 961 year: 1999 end-page: 974 ident: bib22 article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? publication-title: Neural Networks – reference: A.A. Frolov, D. Husek, H. Rezankova, V. Snasel, P. Polyakov, Clustering variables by classical approaches and neural network Boolean factor analysis, in: IEEE International Joint Conference on Neural Networks, IJCNN '08, pp. 3742–3746. – volume: 18 start-page: 698 year: 2007 end-page: 707 ident: bib29 article-title: Boolean factor analysis by attractor neural network publication-title: IEEE Transactions on Neural Networks – volume: 89 start-page: 355 year: 1998 end-page: 368 ident: bib7 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learning in Graphical Models – volume: 49 start-page: 151 year: 2002 end-page: 162 ident: bib32 article-title: Imposing sparsity on the mixing matrix in independent component analysis publication-title: Neurocomputing – year: 2011 ident: bib24 article-title: Design of k-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution publication-title: Neurocomputing – volume: 14 start-page: 315 year: 1984 end-page: 325 ident: bib3 article-title: The syndrome concept publication-title: Psychological Medicine – volume: 9 start-page: 1227 year: 2008 end-page: 1267 ident: bib2 article-title: Maximal causes for non-linear component extraction publication-title: The Journal of Machine Learning Research – volume: 262 start-page: 23 year: 1971 end-page: 81 ident: bib21 article-title: Simple memory publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990) – volume: 5 start-page: 1457 year: 2004 end-page: 1469 ident: bib19 article-title: Non-negative matrix factorization with sparseness constrains publication-title: Journal of Machine Learning Research – reference: D. Husek, P. Moravec, V. Snasel, A. Frolov, H. Rezankova, P. Polyakov, Comparison of neural network boolean factor analysis method with some other dimension reduction methods on bars problem, in: Second International Conference on Pattern Recognition and Machine Intelligence, Lecture Notes in Computer Science, vol. 4815, Springer, 2007, pp. 235–243. – volume: 12 start-page: 241 year: 2001 end-page: 253 ident: bib14 article-title: Redundancy reduction revisited publication-title: Network – year: 2011 ident: bib27 article-title: Rank-two residue iteration method for nonnegative matrix factorization publication-title: Neurocomputing – volume: 176 start-page: 161 year: 1970 end-page: 234 ident: bib15 article-title: A theory for cerebral neocortex publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences (1934–1990) – volume: 14 start-page: 2157 year: 2002 end-page: 2179 ident: bib10 article-title: Preintegration lateral inhibition enhances unsupervised learning publication-title: Neural Computation – volume: 17 start-page: 675 year: 2007 ident: bib26 article-title: On the road to genetic Boolean matrix factorization publication-title: Neural Network World – volume: 71 start-page: 2356 year: 2008 end-page: 2376 ident: bib30 article-title: Hybridizing sparse component analysis with genetic algorithms for microarray analysis publication-title: Neurocomputing – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: bib6 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 64 start-page: 165 year: 1990 end-page: 170 ident: bib8 article-title: Forming sparse representations by local anti-Hebbian learning publication-title: Biological Cybernetics – volume: 52 start-page: 389 year: 2003 end-page: 395 ident: bib11 article-title: Exploring the functional significance of dendritic inhibition in cortical pyramidal cells publication-title: Neurocomputing – year: 1992 ident: bib16 article-title: Associative Neuron-like Structures – volume: 7 start-page: 51 year: 1995 end-page: 71 ident: bib1 article-title: A multiple cause mixture model for unsupervised learning publication-title: Neural Computation – volume: 7 start-page: 793 year: 2006 end-page: 815 ident: bib9 article-title: Learning image components for object recognition publication-title: Journal of Machine Learning Research – volume: 15 start-page: 623 year: 1985 end-page: 628 ident: bib4 article-title: Psychopathology and boolean factor analysis publication-title: Psychological Medicine – volume: 71 start-page: 2291 year: 2008 end-page: 2308 ident: bib33 article-title: Factorisation and denoising of 0-1 data publication-title: Neurocomputing – volume: 20 start-page: 1073 year: 2009 end-page: 1086 ident: bib5 article-title: Recurrent neural network based Boolean factor analysis and its application to automatic terms and documents categorization publication-title: IEEE Transactions on Neural Networks – volume: 48 start-page: 819 year: 2002 end-page: 846 ident: bib23 article-title: Hierarchical word clustering – automatic thesaurus generation publication-title: Neurocomputing – year: 1999 ident: bib18 article-title: Formal Concept Analysis – volume: 20 start-page: 1073 year: 2009 ident: 10.1016/j.neucom.2012.02.055_bib5 article-title: Recurrent neural network based Boolean factor analysis and its application to automatic terms and documents categorization publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2016090 – volume: 52 start-page: 389 year: 2003 ident: 10.1016/j.neucom.2012.02.055_bib11 article-title: Exploring the functional significance of dendritic inhibition in cortical pyramidal cells publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00847-0 – volume: 20 start-page: 1348 year: 2008 ident: 10.1016/j.neucom.2012.02.055_bib17 article-title: The discrete basis problem publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.53 – volume: 89 start-page: 355 year: 1998 ident: 10.1016/j.neucom.2012.02.055_bib7 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learning in Graphical Models doi: 10.1007/978-94-011-5014-9_12 – year: 2011 ident: 10.1016/j.neucom.2012.02.055_bib24 article-title: Design of k-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution publication-title: Neurocomputing – volume: 49 start-page: 151 year: 2002 ident: 10.1016/j.neucom.2012.02.055_bib32 article-title: Imposing sparsity on the mixing matrix in independent component analysis publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00512-X – volume: 9 start-page: 1227 year: 2008 ident: 10.1016/j.neucom.2012.02.055_bib2 article-title: Maximal causes for non-linear component extraction publication-title: The Journal of Machine Learning Research – ident: 10.1016/j.neucom.2012.02.055_bib28 doi: 10.1007/978-3-540-77046-6_29 – volume: 18 start-page: 698 year: 2007 ident: 10.1016/j.neucom.2012.02.055_bib29 article-title: Boolean factor analysis by attractor neural network publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2007.891664 – volume: 262 start-page: 23 year: 1971 ident: 10.1016/j.neucom.2012.02.055_bib21 article-title: Simple memory publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990) doi: 10.1098/rstb.1971.0078 – ident: 10.1016/j.neucom.2012.02.055_bib25 – start-page: 37 year: 1985 ident: 10.1016/j.neucom.2012.02.055_bib13 article-title: Cerebral cortex as model builder – year: 1992 ident: 10.1016/j.neucom.2012.02.055_bib16 – volume: 71 start-page: 2356 year: 2008 ident: 10.1016/j.neucom.2012.02.055_bib30 article-title: Hybridizing sparse component analysis with genetic algorithms for microarray analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.09.017 – volume: 7 start-page: 793 year: 2006 ident: 10.1016/j.neucom.2012.02.055_bib9 article-title: Learning image components for object recognition publication-title: Journal of Machine Learning Research – volume: 14 start-page: 2157 year: 2002 ident: 10.1016/j.neucom.2012.02.055_bib10 article-title: Preintegration lateral inhibition enhances unsupervised learning publication-title: Neural Computation doi: 10.1162/089976602320264033 – year: 2011 ident: 10.1016/j.neucom.2012.02.055_bib27 article-title: Rank-two residue iteration method for nonnegative matrix factorization publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.05.011 – volume: 73 start-page: 684 year: 2010 ident: 10.1016/j.neucom.2012.02.055_bib31 article-title: An associative sparse coding neural network and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.11.033 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.neucom.2012.02.055_bib6 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 12 start-page: 241 year: 2001 ident: 10.1016/j.neucom.2012.02.055_bib14 article-title: Redundancy reduction revisited publication-title: Network doi: 10.1088/0954-898X/12/3/301 – volume: 15 start-page: 623 year: 1985 ident: 10.1016/j.neucom.2012.02.055_bib4 article-title: Psychopathology and boolean factor analysis publication-title: Psychological Medicine doi: 10.1017/S0033291700031470 – year: 1999 ident: 10.1016/j.neucom.2012.02.055_bib18 – volume: 5 start-page: 1457 year: 2004 ident: 10.1016/j.neucom.2012.02.055_bib19 article-title: Non-negative matrix factorization with sparseness constrains publication-title: Journal of Machine Learning Research – volume: 401 start-page: 788 year: 1999 ident: 10.1016/j.neucom.2012.02.055_bib20 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 12 start-page: 961 year: 1999 ident: 10.1016/j.neucom.2012.02.055_bib22 article-title: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? publication-title: Neural Networks doi: 10.1016/S0893-6080(99)00046-5 – volume: 7 start-page: 51 year: 1995 ident: 10.1016/j.neucom.2012.02.055_bib1 article-title: A multiple cause mixture model for unsupervised learning publication-title: Neural Computation doi: 10.1162/neco.1995.7.1.51 – volume: 48 start-page: 819 year: 2002 ident: 10.1016/j.neucom.2012.02.055_bib23 article-title: Hierarchical word clustering – automatic thesaurus generation publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00675-0 – volume: 71 start-page: 2291 year: 2008 ident: 10.1016/j.neucom.2012.02.055_bib33 article-title: Factorisation and denoising of 0-1 data publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.07.038 – volume: 14 start-page: 315 year: 1984 ident: 10.1016/j.neucom.2012.02.055_bib3 article-title: The syndrome concept publication-title: Psychological Medicine doi: 10.1017/S0033291700003585 – volume: 64 start-page: 165 year: 1990 ident: 10.1016/j.neucom.2012.02.055_bib8 article-title: Forming sparse representations by local anti-Hebbian learning publication-title: Biological Cybernetics doi: 10.1007/BF02331346 – volume: 76 start-page: 3 year: 2010 ident: 10.1016/j.neucom.2012.02.055_bib12 article-title: Discovery of optimal factors in binary data via a novel method of matrix decomposition publication-title: Journal of Computer and System Sciences doi: 10.1016/j.jcss.2009.05.002 – volume: 17 start-page: 675 year: 2007 ident: 10.1016/j.neucom.2012.02.055_bib26 article-title: On the road to genetic Boolean matrix factorization publication-title: Neural Network World – volume: 176 start-page: 161 year: 1970 ident: 10.1016/j.neucom.2012.02.055_bib15 article-title: A theory for cerebral neocortex publication-title: Proceedings of the Royal Society of London. Series B, Biological Sciences (1934–1990) doi: 10.1098/rspb.1970.0040 |
| SSID | ssj0017129 |
| Score | 2.128476 |
| Snippet | Methods for the discovery of hidden structures of high-dimensional binary data are one of the most important challenges facing the community of machine... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 83 |
| SubjectTerms | Algorithms Bars Bars problem Benchmarking Binary data Binary data model Binary Matrix Factorization Boolean algebra Boolean Factor Analysis Dimension reduction Factor analysis Mathematical models Neural networks |
| Title | Two Expectation-Maximization algorithms for Boolean Factor Analysis |
| URI | https://dx.doi.org/10.1016/j.neucom.2012.02.055 https://www.proquest.com/docview/1793285092 |
| Volume | 130 |
| WOSCitedRecordID | wos000333233200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlpSBxq1wldpw4x2rZChCselikcopsx4Eu2WTVF-XfM34kbXe1LHtAqqLKjZ0083k8Gc98g9C7olCcxVpg-JnjuAwpFoWMMQtLQWmmADKWXf9zenLCp9Ns0uuVbS7Mukrrmm822cV_FTW0gbBN6uwtxN0NCg3wHYQORxA7HP9N8L8aS2Cs3CY7_iI2s3OfbTkQ1fdmPlv-cDQMJtOhMq74sa260zGU7Fqslr1D2doP3qswOjfkCoVBUudFGM9Bia73MmYGo-EWMwttte773RigSVP9Fj9dr4lY62rwbbjrhIhs7IrLE269iYRBQ7SvWP2Oi1ONrl6NX2RdTO4V9e08CWfDWq9MLA9ciVhGVcfku8-WfWkV62IL27C1s9yNkptR8hA-jN1BByRlGe-jg9HH4-mnbr8pjYhjZfR_o02ytJGAV-_mOiPm0nJubZTTh-i-f7kIRg4Uj1BP14_Rg7ZwR-D1-BN0BBgJrsNIsMVIABgJPEYCh5GgxchT9HV8fHr0AftqGljBpFviKIupAntEJUUieVpIkRSpEkTGkSSJzMJMKSppojScQ5VKFJMyo1yCxtYRT-kz1K-bWj9HAStlTKUkZUqjmMlIhERzk-NcwrSH9_1DRNvHkytPNW8qnlT534RziHDX68JRrdxwfto--dybi84MzAFON_R82woqB21qtshErZvVIjfLFeFgRJMXt7ybl-jedmK8Qv3lfKVfo7tqvZwt5m883v4Axcqa7g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Expectation-Maximization+algorithms+for+Boolean+Factor+Analysis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Frolov%2C+Alexander+A.&rft.au=Husek%2C+Dusan&rft.au=Polyakov%2C+Pavel+Y.&rft.date=2014-04-23&rft.issn=0925-2312&rft.volume=130&rft.spage=83&rft.epage=97&rft_id=info:doi/10.1016%2Fj.neucom.2012.02.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2012_02_055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |