Alternated and multi-step inertial approximation methods for solving convex bilevel optimization problems

In this paper, we propose three kinds of inertial approximation methods based on the proximal gradient algorithm to accelerate the convergence of the algorithm for solving convex bilevel optimization problems. Under reasonable parameters, we prove that our algorithms converge strongly to some soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 72; H. 10; S. 2517 - 2545
Hauptverfasser: Duan, Peichao, Zhang, Yiqun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 03.10.2023
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose three kinds of inertial approximation methods based on the proximal gradient algorithm to accelerate the convergence of the algorithm for solving convex bilevel optimization problems. Under reasonable parameters, we prove that our algorithms converge strongly to some solution of the problem, which is the unique solution of a variational inequality problem. Firstly, two alternated inertial methods are presented. Secondly, a multi-step inertial method is proposed to accelerate the convergence of the algorithm. Thirdly, an alternated multi-step inertial method is further introduced. In addition, we also consider that the inertial parameters can be chosen as positive or negative parameters, and we get better results. Our numerical results illustrate the performances of our algorithms and present some comparisons with related algorithms. Our results improve and extend the corresponding results reported by some authors recently.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2022.2069022