Alternated and multi-step inertial approximation methods for solving convex bilevel optimization problems

In this paper, we propose three kinds of inertial approximation methods based on the proximal gradient algorithm to accelerate the convergence of the algorithm for solving convex bilevel optimization problems. Under reasonable parameters, we prove that our algorithms converge strongly to some soluti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 72; číslo 10; s. 2517 - 2545
Hlavní autori: Duan, Peichao, Zhang, Yiqun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 03.10.2023
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose three kinds of inertial approximation methods based on the proximal gradient algorithm to accelerate the convergence of the algorithm for solving convex bilevel optimization problems. Under reasonable parameters, we prove that our algorithms converge strongly to some solution of the problem, which is the unique solution of a variational inequality problem. Firstly, two alternated inertial methods are presented. Secondly, a multi-step inertial method is proposed to accelerate the convergence of the algorithm. Thirdly, an alternated multi-step inertial method is further introduced. In addition, we also consider that the inertial parameters can be chosen as positive or negative parameters, and we get better results. Our numerical results illustrate the performances of our algorithms and present some comparisons with related algorithms. Our results improve and extend the corresponding results reported by some authors recently.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2022.2069022