Alternated and multi-step inertial approximation methods for solving convex bilevel optimization problems
In this paper, we propose three kinds of inertial approximation methods based on the proximal gradient algorithm to accelerate the convergence of the algorithm for solving convex bilevel optimization problems. Under reasonable parameters, we prove that our algorithms converge strongly to some soluti...
Saved in:
| Published in: | Optimization Vol. 72; no. 10; pp. 2517 - 2545 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Taylor & Francis
03.10.2023
Taylor & Francis LLC |
| Subjects: | |
| ISSN: | 0233-1934, 1029-4945 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we propose three kinds of inertial approximation methods based on the proximal gradient algorithm to accelerate the convergence of the algorithm for solving convex bilevel optimization problems. Under reasonable parameters, we prove that our algorithms converge strongly to some solution of the problem, which is the unique solution of a variational inequality problem. Firstly, two alternated inertial methods are presented. Secondly, a multi-step inertial method is proposed to accelerate the convergence of the algorithm. Thirdly, an alternated multi-step inertial method is further introduced. In addition, we also consider that the inertial parameters can be chosen as positive or negative parameters, and we get better results. Our numerical results illustrate the performances of our algorithms and present some comparisons with related algorithms. Our results improve and extend the corresponding results reported by some authors recently. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2022.2069022 |