A New Unsupervised Online Early Fault Detection Framework of Rolling Bearings Based on Granular Feature Forecasting
In online scenarios, the monitoring signals are collected in the form of streaming data and would raise some requirements for early fault detection (EFD) of rolling bearings: 1) enhancing the detection accuracy of online data; 2) lowering the computational cost of real-time detection; 3) reducing fa...
Uloženo v:
| Vydáno v: | IEEE access Ročník 9; s. 159684 - 159698 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!