Trainability of Dissipative Perceptron-Based Quantum Neural Networks
Several architectures have been proposed for quantum neural networks (QNNs), with the goal of efficiently performing machine learning tasks on quantum data. Rigorous scaling results are urgently needed for specific QNN constructions to understand which, if any, will be trainable at a large scale. He...
Uložené v:
| Vydané v: | Physical review letters Ročník 128; číslo 18; s. 180505 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
American Physical Society (APS)
06.05.2022
|
| Predmet: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!