Time-varying multi-objective optimisation over switching graphs via fixed-time consensus algorithms

This paper considers distributed multi-objective optimisation problems with time-varying cost functions for network-connected multi-agent systems over switching graphs. The scalarisation approach is used to convert the problem into a weighted-sum objective. Fixed-time consensus algorithms are develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of systems science Jg. 51; H. 15; S. 2793 - 2806
Hauptverfasser: Li, Zhongguo, Ding, Zhengtao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Taylor & Francis 17.11.2020
Taylor & Francis Ltd
Schlagworte:
ISSN:0020-7721, 1464-5319
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers distributed multi-objective optimisation problems with time-varying cost functions for network-connected multi-agent systems over switching graphs. The scalarisation approach is used to convert the problem into a weighted-sum objective. Fixed-time consensus algorithms are developed for each agent to estimate the global variables and drive all local copies of the decision vector to a consensus. The algorithm with fixed gains is first proposed, where some global information is required to choose the gains. Then, an adaptive algorithm is presented to eliminate the use of global information. The convergence of those algorithms to the Pareto solutions is established via Lyapunov theory for connected graphs. In the case of disconnected graphs, the convergence to the subsets of the Pareto fronts is studied. Simulation results are provided to demonstrate the effectiveness of the proposed algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7721
1464-5319
DOI:10.1080/00207721.2020.1801885