Existence of solutions for polyhedral convex set optimization problems

Polyhedral convex set optimization problems are the simplest optimization problems with set-valued objective function. Their role in set optimization is comparable to the role of linear programs in scalar optimization. Vector linear programs and multiple objective linear programs provide proper subc...

Full description

Saved in:
Bibliographic Details
Published in:Optimization Vol. 73; no. 11; pp. 3339 - 3349
Main Author: Löhne, Andreas
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 01.11.2024
Taylor & Francis LLC
Subjects:
ISSN:0233-1934, 1029-4945
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Polyhedral convex set optimization problems are the simplest optimization problems with set-valued objective function. Their role in set optimization is comparable to the role of linear programs in scalar optimization. Vector linear programs and multiple objective linear programs provide proper subclasses. In this article, we choose a solution concept for arbitrary polyhedral convex set optimization problems out of several alternatives, show existence of solutions and characterize the existence of solutions in different ways. Two known results are obtained as particular cases, both with proofs being easier than the original ones: The existence of solutions of bounded polyhedral convex set optimization problems and a characterization of the existence of solutions of vector linear programs.
AbstractList Polyhedral convex set optimization problems are the simplest optimization problems with set-valued objective function. Their role in set optimization is comparable to the role of linear programs in scalar optimization. Vector linear programs and multiple objective linear programs provide proper subclasses. In this article, we choose a solution concept for arbitrary polyhedral convex set optimization problems out of several alternatives, show existence of solutions and characterize the existence of solutions in different ways. Two known results are obtained as particular cases, both with proofs being easier than the original ones: The existence of solutions of bounded polyhedral convex set optimization problems and a characterization of the existence of solutions of vector linear programs.
Author Löhne, Andreas
Author_xml – sequence: 1
  givenname: Andreas
  orcidid: 0000-0003-0872-4735
  surname: Löhne
  fullname: Löhne, Andreas
  email: andreas.loehne@uni-jena.de
  organization: Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena
BookMark eNqFkE1LAzEURYNUsK3-BCHgemq-5gs3SmlVKLjRdchkMpiSSWqSauuvN2PrxoVm87I4973LmYCRdVYBcInRDKMKXSNCKa4pm5H0mxFSIYSrEzDGiNQZq1k-AuOByQboDExCWCNEcEHYGCwXOx2islJB18HgzDZqZwPsnIcbZ_avqvXCQOnsu9rBoCJ0m6h7_SkGDm68a4zqwzk47YQJ6uI4p-BluXieP2Srp_vH-d0qk5RWMWtrJhUVlHUFqnLSlOk1eYtKJdsaK4pznOq2ZUE70Qgiily2FVaixmXJMCvoFFwd9qbDb1sVIl-7rbfpJKcYl4TmmJSJujlQ0rsQvOq41PG7cPRCG44RH8TxH3F8EMeP4lI6_5XeeN0Lv_83d3vIaZvs9eLDedPyKPbG-c4LK_VQ8s8VX6vdhlE
CitedBy_id crossref_primary_10_1080_02331934_2024_2377237
crossref_primary_10_1137_23M1608227
Cites_doi 10.1007/s11579-011-0047-0
10.1007/s00186-019-00677-7
10.1080/02331930600819720
10.1007/s00780-004-0127-6
10.1080/02331934.2012.749259
10.1080/02331931003665108
10.1137/080743494
10.1016/0022-247X(87)90065-5
10.1007/978-3-642-18351-5
10.1515/9781400873173
10.1007/978-3-662-48670-2_3
10.1007/s00186-016-0554-0
10.1007/978-3-642-54265-7
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2023.2280018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 3349
ExternalDocumentID 10_1080_02331934_2023_2280018
2280018
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ACTCW
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMVHM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
EJD
IVXBP
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-d94ce3a34f60852b7777b5d07ecd91e3151945d763faba2a65cd81ea917741463
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001121106600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Wed Aug 13 04:21:17 EDT 2025
Sat Nov 29 07:53:12 EST 2025
Tue Nov 18 21:29:25 EST 2025
Mon Oct 20 23:45:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-d94ce3a34f60852b7777b5d07ecd91e3151945d763faba2a65cd81ea917741463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0872-4735
PQID 3117235127
PQPubID 27961
PageCount 11
ParticipantIDs proquest_journals_3117235127
crossref_citationtrail_10_1080_02331934_2023_2280018
informaworld_taylorfrancis_310_1080_02331934_2023_2280018
crossref_primary_10_1080_02331934_2023_2280018
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_8_1
e_1_3_2_7_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_12_1
  doi: 10.1007/s11579-011-0047-0
– ident: e_1_3_2_16_1
  doi: 10.1007/s00186-019-00677-7
– ident: e_1_3_2_6_1
  doi: 10.1080/02331930600819720
– ident: e_1_3_2_10_1
  doi: 10.1007/s00780-004-0127-6
– ident: e_1_3_2_4_1
  doi: 10.1080/02331934.2012.749259
– ident: e_1_3_2_14_1
  doi: 10.1080/02331931003665108
– ident: e_1_3_2_11_1
  doi: 10.1137/080743494
– ident: e_1_3_2_13_1
– ident: e_1_3_2_3_1
– ident: e_1_3_2_8_1
  doi: 10.1016/0022-247X(87)90065-5
– ident: e_1_3_2_7_1
  doi: 10.1007/978-3-642-18351-5
– ident: e_1_3_2_15_1
  doi: 10.1515/9781400873173
– ident: e_1_3_2_2_1
  doi: 10.1007/978-3-662-48670-2_3
– ident: e_1_3_2_9_1
  doi: 10.1007/s00186-016-0554-0
– ident: e_1_3_2_5_1
  doi: 10.1007/978-3-642-54265-7
SSID ssj0021624
Score 2.3702574
Snippet Polyhedral convex set optimization problems are the simplest optimization problems with set-valued objective function. Their role in set optimization is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3339
SubjectTerms Convexity
Linear programming
Multiple objective analysis
multiple objective linear programming
Optimization
Set optimization
vector linear programming
Title Existence of solutions for polyhedral convex set optimization problems
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2023.2280018
https://www.proquest.com/docview/3117235127
Volume 73
WOSCitedRecordID wos001121106600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYoCBb0ShIA-sKUl8SeoRoUYMqGIooptlO45AKk3VBFT-PefEqVoh1AGyZbiTdT6f31l37wi5YRHm_ryfeX3tGw9y7nvSlkBBZDSHDAGtqXlmH5PhsD8e8ydXTVi6skqbQ-cNUUQdq-3hlqpsK-Ju8ZpBx2H2RSRkPcvn4ge23ReRvfXxUfqyTLmCuB5rayU8K9L28PymZe12WuMu_RGr6wsoPfiHpR-SfYc-6V3jLkdky0yPyd4KJ-EJSQcLu_PoC7TI6dIzKa6RzorJ16vJ5qiirlZf0NJUtMCo8-7aOakbUFOekud0MLp_8NywBU9jllp5GQdtmGSQx4jCQpXgp6LMT4zOeGAYIgMOUYbhKJdKhjK2rAKBkZjuISiBmJ2R7WkxNeeEgmTK58aEoAFykLYWELNMqQyHWCrVIdAaWWjHRG4HYkxE0BKWOjMJaybhzNQhvaXYrKHi2CTAV3dQVPUbSN4MLBFsg2y33W7hTrUVQbjHECIlF39QfUl28ReahsYu2a7mH-aK7OjP6q2cX9f--w23ZunT
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojBgBy4drRN-sgRoVVDjJ2G2C1K21QgjXXaChr_HrtNp00IcYBeK0eR49ifI_szIdfMg9xfhKkVJra2eCZsS2EJFPd0IngKgFaXPLO9oN8Ph0Ox3AuDZZWYQ2cVUUTpq_Fy42N0XRJ3A3EGLIfhk4jL2kjoYjvhOtnwINZiWd8gel4kXY5fDrZFEQtl6i6en5ZZiU8r7KXfvHUZgqK9_9j8Ptk1AJTeVhZzQNb0-JDsLNESHpGoM8fDB3OgeUYXxklhk3SSjz5fdDqFJcqC9Tmd6YLm4HjeTEcnNTNqZsfkKeoM7rqWmbdgJZCoFlYqeKKZYjzzAYi5cQBf7KV2oJNUOJoBOBDcS8EjZSpWrvKRWMDRCjI-wCXcZyekMc7H-pRQrlhsC61dnnCecYXlgJBoqlgL7qs4bhJea1kmhowcZ2KMpFNzlho1SVSTNGpqkvZCbFKxcfwmIJaPUBblM0hWzSyR7BfZVn3e0lxsFAHExwAlBWd_WPqKbHUHjz3Zu-8_nJNt-MWr_sYWaRTTd31BNpOP4nU2vSyN-Qt_cu30
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA86RfTBb3E6NQ--drZN-pFH0RXFMfYwcW8lTVMU5jrWKvO_95KmY0NkD9rXciHcXe5-Fy6_Q-iaeFD7szC1QmFLi2bMtrhqgaKeFIymAGil5pntBr1eOByyvukmLExbpaqhs4ooQsdqdbgnaVZ3xN1AmgHHIepGxCVtxediO-E62tDkWODSg-hlXnM5vp5rq0QsJVM_4vltmaX0tERe-iNY6wwU7f3D3vfRroGf-LbylwO0JseHaGeBlPAIRZ2ZMj04A84zPHdNDHvEk3z09SrTKSyh29VnuJAlziHsvJv3nNhMqCmO0XPUGdw9WGbagiWgTC2tlFEhCSc08wGGuUkAX-KldiBFyhxJABow6qUQjzKecJf7ilbAkRzqPUAl1CcnqDHOx_IUYcpJYjMpXSoozShXzYBQZvJEMurzJGkiWis5FoaKXE3EGMVOzVhq1BQrNcVGTU3UnotNKi6OVQJs0YJxqS9BsmpiSUxWyLZqc8fmWCsRwHsEMFJw9oelr9BW_z6Ku4-9p3O0DX9o9bixhRrl9ENeoE3xWb4V00vtyt-OuOyY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+solutions+for+polyhedral+convex+set+optimization+problems&rft.jtitle=Optimization&rft.au=L%C3%B6hne%2C+Andreas&rft.date=2024-11-01&rft.pub=Taylor+%26+Francis&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=11&rft.spage=3339&rft.epage=3349&rft_id=info:doi/10.1080%2F02331934.2023.2280018&rft.externalDocID=2280018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon