Existence of solutions for polyhedral convex set optimization problems
Polyhedral convex set optimization problems are the simplest optimization problems with set-valued objective function. Their role in set optimization is comparable to the role of linear programs in scalar optimization. Vector linear programs and multiple objective linear programs provide proper subc...
Gespeichert in:
| Veröffentlicht in: | Optimization Jg. 73; H. 11; S. 3339 - 3349 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Taylor & Francis
01.11.2024
Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 0233-1934, 1029-4945 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Polyhedral convex set optimization problems are the simplest optimization problems with set-valued objective function. Their role in set optimization is comparable to the role of linear programs in scalar optimization. Vector linear programs and multiple objective linear programs provide proper subclasses. In this article, we choose a solution concept for arbitrary polyhedral convex set optimization problems out of several alternatives, show existence of solutions and characterize the existence of solutions in different ways. Two known results are obtained as particular cases, both with proofs being easier than the original ones: The existence of solutions of bounded polyhedral convex set optimization problems and a characterization of the existence of solutions of vector linear programs. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2023.2280018 |