New subgradient extragradient algorithm for solving variational inequalities in Hadamard manifold

This paper introduces a schematic approximation method for a solution to a variational inequality problem in the framework of Hadamard manifold. The method is a combination of the subgradient extragradient technique and Popov extragradient method. Using this method, some convergence algorithms were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 73; H. 8; S. 2585 - 2607
1. Verfasser: Oyewole, O.K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Taylor & Francis 02.08.2024
Taylor & Francis LLC
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a schematic approximation method for a solution to a variational inequality problem in the framework of Hadamard manifold. The method is a combination of the subgradient extragradient technique and Popov extragradient method. Using this method, some convergence algorithms were proved when the cost operators are pseudomonotone and strongly pseudomonotone, respectively. In the construction of this method, the dependence on Lipschitz constants of the operators is dispensed with by the use of a monotone decreasing step size. We give an application of our main result to the constrained convex minimization problem. Finally, we report some numerical examples to illustrate the efficiency and applicability of the method.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2023.2230995