A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems

In this paper, mixed-integer hybrid differential evolution (MIHDE) is developed to deal with the mixed-integer optimization problems. This hybrid algorithm contains the migration operation to avoid candidate individuals clustering together. We introduce the population diversity measure to inspect wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & mathematics with applications (1987) Ročník 47; číslo 8; s. 1295 - 1307
Hlavní autoři: Lin, Yung-Chien, Hwang, Kao-Shing, Wang, Feng-Sheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2004
Témata:
ISSN:0898-1221, 1873-7668
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, mixed-integer hybrid differential evolution (MIHDE) is developed to deal with the mixed-integer optimization problems. This hybrid algorithm contains the migration operation to avoid candidate individuals clustering together. We introduce the population diversity measure to inspect when the migration operation should be performed so that the user can use a smaller population size to obtain a global solution. A mixed coding representation and a rounding operation are introduced in MIHDE so that the hybrid algorithm is not only used to solve the mixed-integer nonlinear optimization problems, but also used to solve the real and integer nonlinear optimization problems. Some numerical examples are tested to illustrate the performance of the proposed algorithm. Numerical examples show that the proposed algorithm converges to better solutions than the conventional genetic algorithms.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0898-1221
1873-7668
DOI:10.1016/S0898-1221(04)90123-X