Optimality Conditions for Multiobjective Optimization Problems via Image Space Analysis

In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization Jg. 44; H. 7; S. 708 - 723
Hauptverfasser: Xu, Yingrang, Li, Shengjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 19.05.2023
Taylor & Francis Ltd
Schlagworte:
ISSN:0163-0563, 1532-2467
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is introduced by the class of strong separation functions. Then, generalized Karush-Kuhn-Tucker (KKT for short) necessary optimality conditions are established without constraint qualifications or regularity conditions. Under the suitable assumptions, Lagrangian-type sufficient optimality conditions are also characterized. Moreover, the difference between strong separation and weak separation methods is explained.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2023.2208867