Optimality Conditions for Multiobjective Optimization Problems via Image Space Analysis
In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is in...
Uloženo v:
| Vydáno v: | Numerical functional analysis and optimization Ročník 44; číslo 7; s. 708 - 723 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
19.05.2023
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0163-0563, 1532-2467 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, optimality conditions on (weak) efficient solutions in multiobjective optimization problems are investigated by using the image space analysis. A class of strong separation functions is constructed by oriented distance functions. Simultaneously, a generalized Lagrange function is introduced by the class of strong separation functions. Then, generalized Karush-Kuhn-Tucker (KKT for short) necessary optimality conditions are established without constraint qualifications or regularity conditions. Under the suitable assumptions, Lagrangian-type sufficient optimality conditions are also characterized. Moreover, the difference between strong separation and weak separation methods is explained. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2023.2208867 |