A parallel subgradient projection algorithm for quasiconvex equilibrium problems under the intersection of convex sets

In this paper, we studied the equilibrium problem where the bi-function may be quasiconvex with respect to the second variable and the feasible set is the intersection of a finite number of convex sets. We propose a projection algorithm, where the projection can be computed independently onto each c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 71; číslo 15; s. 4447 - 4462
Hlavní autoři: Yen, Le Hai, Muu, Le Dung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 09.12.2022
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we studied the equilibrium problem where the bi-function may be quasiconvex with respect to the second variable and the feasible set is the intersection of a finite number of convex sets. We propose a projection algorithm, where the projection can be computed independently onto each component set. The convergence of the algorithm is investigated and numerical examples for a variational inequality problem involving affine fractional operator are provided to demonstrate the behaviour of the algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2021.1946057