Compromise allocation problem in multivariate stratified sampling with flexible fuzzy goals

In a multivariate stratified sample survey, we assumed p-characteristics which are to be measured on each unit of the population and the population is further subdivided into L subpopulations. For estimating the p-population means of all characteristics, which are not known in advance usually, a ran...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical computation and simulation Ročník 90; číslo 9; s. 1557 - 1569
Hlavní autoři: Haq, Ahteshamul, Ali, Irfan, Varshney, Rahul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 12.06.2020
Taylor & Francis Ltd
Témata:
ISSN:0094-9655, 1563-5163
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In a multivariate stratified sample survey, we assumed p-characteristics which are to be measured on each unit of the population and the population is further subdivided into L subpopulations. For estimating the p-population means of all characteristics, which are not known in advance usually, a random sample is taken out from the population with the help of simple random sampling. In a multivariate stratified sample survey, the optimum allocation of one character is not considered as optimum for others. Then a solution is needed to work out an allocation that may be optimum for all characteristics in some sense, called as compromise allocation in sampling literature. The estimation of p-population means in the presence of non-response, for a fixed cost, is discussed. The formulated integer non-linear programming problem is converted into a binary goal programming problem. The problem's solution is obtained by using the concept of flexible fuzzy goal programming.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2020.1734808