Tibetan Sentiment Classification Method Based on Semi-Supervised Recursive Autoencoders

We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers, materials & continua Ročník 60; číslo 2; s. 707 - 719
Hlavní autori: Yan, Xiaodong, Song, Wei, Zhao, Xiaobing, Wang, Anti
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Henderson Tech Science Press 2019
Predmet:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We apply the semi-supervised recursive autoencoders (RAE) model for the sentiment classification task of Tibetan short text, and we obtain a better classification effect. The input of the semi-supervised RAE model is the word vector. We crawled a large amount of Tibetan text from the Internet, got Tibetan word vectors by using Word2vec, and verified its validity through simple experiments. The values of parameter α and word vector dimension are important to the model effect. The experiment results indicate that when α is 0.3 and the word vector dimension is 60, the model works best. Our experiment also shows the effectiveness of the semi-supervised RAE model for Tibetan sentiment classification task and suggests the validity of the Tibetan word vectors we trained.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2019.05157