Some invariant subspaces for w-hyponormal operators

In this paper, we prove that if is w-hyponormal, then the quasinilpotent part of T is given by for all sufficiently large integers p, where . We prove that if T is w-hyponormal and the spectrum is finite, then T is algebraic. In addition, we prove that if is w-hyponormal and has decomposition proper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear & multilinear algebra Ročník 67; číslo 7; s. 1460 - 1470
Hlavní autor: Rashid, M. H. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.07.2019
Taylor & Francis Ltd
Témata:
ISSN:0308-1087, 1563-5139
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we prove that if is w-hyponormal, then the quasinilpotent part of T is given by for all sufficiently large integers p, where . We prove that if T is w-hyponormal and the spectrum is finite, then T is algebraic. In addition, we prove that if is w-hyponormal and has decomposition property , then T has a non-trivial invariant closed linear subspace. Also, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for w-hyponormal operators.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0308-1087
1563-5139
DOI:10.1080/03081087.2018.1455803