Quantile regression for panel data models with fixed effects under random censoring
The locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-pa...
Saved in:
| Published in: | Communications in statistics. Theory and methods Vol. 49; no. 18; pp. 4430 - 4445 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Taylor & Francis
16.09.2020
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0361-0926, 1532-415X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-parametrically or non-parametrically. The large panel data asymptotics are used in an attempt to cope with the incidental parameter problem. The consistency and limiting distribution of the proposed estimator are also derived. The finite sample performance of the proposed estimators are examined via Monte Carlo simulations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0361-0926 1532-415X |
| DOI: | 10.1080/03610926.2019.1601221 |