A parallel subgradient method extended to variational inequalities involving nonexpansive mappings

In this paper, we propose and analyze the convergence of new iteration methods for finding a common point of the solution set of a class of pseudomonotone variational inequalities and the fixed point set of a finite system of nonexpansive mappings in a real Hilbert space. The idea of this algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applicable analysis Ročník 99; číslo 16; s. 2776 - 2792
Hlavní autoři: Anh, Pham Ngoc, Hien, Nguyen Duc, Phuong, Ngo Xuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 09.12.2020
Taylor & Francis Ltd
Témata:
ISSN:0003-6811, 1563-504X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose and analyze the convergence of new iteration methods for finding a common point of the solution set of a class of pseudomonotone variational inequalities and the fixed point set of a finite system of nonexpansive mappings in a real Hilbert space. The idea of this algorithm is to combine the subgradient method with the parallel splitting-up techniques. The main iteration step in the proposed methods uses only one projection and does not require any Lipschitz continuous condition for the cost mapping. The convergent results are also extended to a pseudomonotone equilibrium problem involving a finite system of nonexpansive mappings. Finally, some numerical examples are developed to illustrate the behavior of the new algorithms with respect to existing algorithms.
AbstractList In this paper, we propose and analyze the convergence of new iteration methods for finding a common point of the solution set of a class of pseudomonotone variational inequalities and the fixed point set of a finite system of nonexpansive mappings in a real Hilbert space. The idea of this algorithm is to combine the subgradient method with the parallel splitting-up techniques. The main iteration step in the proposed methods uses only one projection and does not require any Lipschitz continuous condition for the cost mapping. The convergent results are also extended to a pseudomonotone equilibrium problem involving a finite system of nonexpansive mappings. Finally, some numerical examples are developed to illustrate the behavior of the new algorithms with respect to existing algorithms.
Author Anh, Pham Ngoc
Phuong, Ngo Xuan
Hien, Nguyen Duc
Author_xml – sequence: 1
  givenname: Pham Ngoc
  surname: Anh
  fullname: Anh, Pham Ngoc
  email: phamngocanh@tdtu.edu.vn
  organization: Faculty of Mathematics and Statistics, Ton Duc Thang University
– sequence: 2
  givenname: Nguyen Duc
  surname: Hien
  fullname: Hien, Nguyen Duc
  organization: Office of Scientific Research and Technology, Duy Tan University
– sequence: 3
  givenname: Ngo Xuan
  surname: Phuong
  fullname: Phuong, Ngo Xuan
  organization: Department of Mathematics, University of Fire Fighting and Prevention
BookMark eNqFkE9PGzEQxS0EEoH2I1SyxHlT_4k3jrgQISiVkHppJW7WeG2DkWNvbCck3767JFx6oKfRjN57mve7QKcxRYvQN0qmlEjynRDCW0nplBG6mFIhZ0zKEzShouWNILOnUzQZNc0oOkcXpbwSQpkU7QTpJe4hQwg24LLRzxmMt7Hila0vyWC7qzYaa3BNeAvZQ_UpQsA-2vUGgq_elmHZprD18RmPj-16iMVvLV5B3w_H8gWdOQjFfj3OS_Tn_u737UPz-OvHz9vlY9NxLmsDIDrTcW2lI1pT3YJlM-6EEUzMGXOkFcRJxzWbg3Ribobq0iyYttposXD8El0dcvuc1htbqnpNmzx8WxSbtaRdUE7mg-r6oOpyKiVbpzpf32vVDD4oStQIVX1AVSNUdYQ6uMU_7j77FeT9f303B5-PLuUVvKUcjKqwDym7DLHzRfHPI_4CT6aS0w
CitedBy_id crossref_primary_10_1007_s10444_021_09920_4
crossref_primary_10_1007_s40306_021_00467_6
crossref_primary_10_1002_mma_10356
crossref_primary_10_1007_s40314_021_01490_x
crossref_primary_10_1155_2024_9509788
crossref_primary_10_3390_math8020248
crossref_primary_10_1007_s11590_020_01625_9
crossref_primary_10_1155_2020_3183529
crossref_primary_10_1080_02331934_2024_2354458
Cites_doi 10.1007/s10957-004-0926-0
10.1016/j.nahs.2009.03.006
10.1007/s11228-011-0192-x
10.1080/02331934.2011.607497
10.1007/s10013-017-0253-z
10.1007/BF01071091
10.1137/14097238X
10.1080/02331934.2014.906418
10.1007/s10898-012-9970-8
10.1137/060675319
10.1090/S0002-9939-1953-0054846-3
10.1007/s10957-012-0005-x
10.1007/s10957-012-0085-7
10.1016/j.camwa.2010.08.021
10.1016/S0022-247X(02)00458-4
10.1016/j.cam.2010.01.012
10.1016/j.jmaa.2006.08.036
10.1016/j.jat.2006.01.003
10.1007/s40306-017-0226-z
10.1007/s10898-015-0365-5
10.1007/BFb0120965
10.1017/S0004972700028884
10.1137/050624315
10.1007/s11784-018-0554-1
10.1016/j.jmaa.2004.04.059
10.1016/S1570-579X(01)80010-0
10.1287/moor.19.4.790
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
CorporateAuthor Vu The Ngocd
CorporateAuthor_xml – name: Vu The Ngocd
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1080/00036811.2019.1584288
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1563-504X
EndPage 2792
ExternalDocumentID 10_1080_00036811_2019_1584288
1584288
Genre Research Article
GroupedDBID --Z
-~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~S~
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c338t-aa5cdc3be8f0bb1b6ae243f5d525722f0650f8f3b27a8f57d0808d92bebdb59f3
IEDL.DBID TFW
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590561100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0003-6811
IngestDate Wed Aug 13 04:31:10 EDT 2025
Sat Nov 29 03:59:17 EST 2025
Tue Nov 18 22:16:38 EST 2025
Mon Oct 20 23:48:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-aa5cdc3be8f0bb1b6ae243f5d525722f0650f8f3b27a8f57d0808d92bebdb59f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2460691307
PQPubID 53162
PageCount 17
ParticipantIDs proquest_journals_2460691307
crossref_primary_10_1080_00036811_2019_1584288
crossref_citationtrail_10_1080_00036811_2019_1584288
informaworld_taylorfrancis_310_1080_00036811_2019_1584288
PublicationCentury 2000
PublicationDate 2020-12-09
PublicationDateYYYYMMDD 2020-12-09
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-09
  day: 09
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Applicable analysis
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0031
CIT0012
CIT0011
Korpelevich GM. (CIT0019) 1976; 12
CIT0014
CIT0013
CIT0015
CIT0018
CIT0017
Alber Y (CIT0023) 2006
CIT0021
CIT0020
CIT0001
CIT0022
Harker PT (CIT0032) 1990; 26
Konnov IV. (CIT0016) 2000
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
Blum E (CIT0027) 1994; 63
CIT0008
References_xml – ident: CIT0014
  doi: 10.1007/s10957-004-0926-0
– ident: CIT0007
  doi: 10.1016/j.nahs.2009.03.006
– ident: CIT0009
  doi: 10.1007/s11228-011-0192-x
– ident: CIT0028
  doi: 10.1080/02331934.2011.607497
– ident: CIT0015
  doi: 10.1007/s10013-017-0253-z
– ident: CIT0024
  doi: 10.1007/BF01071091
– volume: 26
  start-page: 265
  year: 1990
  ident: CIT0032
  publication-title: Lect Appl Math
– ident: CIT0018
  doi: 10.1137/14097238X
– ident: CIT0021
  doi: 10.1080/02331934.2014.906418
– ident: CIT0010
  doi: 10.1007/s10898-012-9970-8
– ident: CIT0005
  doi: 10.1137/060675319
– ident: CIT0020
  doi: 10.1090/S0002-9939-1953-0054846-3
– ident: CIT0029
  doi: 10.1007/s10957-012-0005-x
– ident: CIT0031
  doi: 10.1007/s10957-012-0085-7
– ident: CIT0003
  doi: 10.1016/j.camwa.2010.08.021
– volume: 12
  start-page: 747
  year: 1976
  ident: CIT0019
  publication-title: Ekon Mat Metody
– ident: CIT0006
  doi: 10.1016/S0022-247X(02)00458-4
– ident: CIT0012
  doi: 10.1016/j.cam.2010.01.012
– ident: CIT0004
  doi: 10.1016/j.jmaa.2006.08.036
– ident: CIT0008
  doi: 10.1016/j.jat.2006.01.003
– ident: CIT0013
  doi: 10.1007/s40306-017-0226-z
– ident: CIT0030
  doi: 10.1007/s10898-015-0365-5
– ident: CIT0017
  doi: 10.1007/BFb0120965
– volume-title: Nonlinear ill-posed problems of monotone type
  year: 2006
  ident: CIT0023
– ident: CIT0002
  doi: 10.1017/S0004972700028884
– ident: CIT0001
  doi: 10.1137/050624315
– volume: 63
  start-page: 123
  year: 1994
  ident: CIT0027
  publication-title: Math Program
– ident: CIT0011
  doi: 10.1007/s11784-018-0554-1
– volume-title: Combined relaxation methods for variational inequalities
  year: 2000
  ident: CIT0016
– ident: CIT0022
  doi: 10.1016/j.jmaa.2004.04.059
– ident: CIT0025
  doi: 10.1016/S1570-579X(01)80010-0
– ident: CIT0026
  doi: 10.1287/moor.19.4.790
SSID ssj0012856
Score 2.229787
Snippet In this paper, we propose and analyze the convergence of new iteration methods for finding a common point of the solution set of a class of pseudomonotone...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2776
SubjectTerms 47 J25
49 J35
65 K10
90 C25
Algorithms
B. Mordukhovich
Convergence
Fixed point
Hilbert space
Inequalities
Iterative methods
nonexpansive mapping
pseudomonotonicity
subgradient projection method
variational inequality
Title A parallel subgradient method extended to variational inequalities involving nonexpansive mappings
URI https://www.tandfonline.com/doi/abs/10.1080/00036811.2019.1584288
https://www.proquest.com/docview/2460691307
Volume 99
WOSCitedRecordID wos000590561100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1563-504X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012856
  issn: 0003-6811
  databaseCode: TFW
  dateStart: 19710401
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2xTsMwELVQxQADhQKiUJAH1pTESRp7rBAVCxVDEd0iX2JXSKVFTVrx-fgcJ6JCqAOMGc5x7PP57vLuHSG3jA9yCWzgSV_lXsRU4EkIBNK4Ki4TyHLwbbOJZDzm06l4dmjCwsEqMYbWFVGEtdV4uCUUNSLuzpKo8ACju0D0A3OFMo7lvsazR1DfZPTa_Edg3PZvRQkPReoant9G2bqdtrhLf9hqewGN2v8w9WNy5LxPOqzU5YTsqUWHtJ0nSt05Lzrk8Klhcy1OCQwpMoTP52pOizXMVhYmVtKq-zSt8-i0XNKNCb1depGa2VUlmyYYNw_GDmLygi6WC_VpbBDi5um7RH6IWXFGXkYPk_tHz_Vm8DIT1JaelHGWZyEorn2AAAZSsSjUcY7sqoxp9Pw01yGwRHIdJ7n5ep4LBgpyiIUOz0kL33dBqIJYSh1IX4fozilhvArI4hAio0bCz7okqvckzRxxOfbPmKdBw29arWqKq5q6Ve2SfiP2UTF37BIQ3zc8LW3KRFf9TdJwh2yv1o7UGYEiZZGJDoVxEpLLPwx9RQ4YxvgIoRE90ipXa3VN9rNN-Vasbqy6fwFq4f1B
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4ScCB8RRvcuBaaNN2TY4IMQ2x7TTEblHcJghpDLQWxM8n7mMaQogDHHtwmiaO48-1PwOcc9HONPK2p32TeRE3gacxkETjaoROMM3QL5tNJIOBGI3kfC0MpVUShrYVUURpq-lwUzC6SYm7LFlUREDwLpAXgbtDuRCLsEzd6QiADTsPsz8JXJQdXEnEI5mmiuenYb7cT1_YS79Z6_IK6rT-Y_KbsFE7oOyq0pgtWDCTbWjVziirj3q-Dev9GaFrvgN4xYgkfDw2Y5a_4eO0zBQrWNWAmjWhdFa8sHeHvusII3PTq6o2HR53D84UUvyCTV4m5sOZIUqdZ8-aKCIe812479wMr7te3Z7BSx2uLTyt4zRLQzTC-ogBtrXhUWjjjAhWObfk_FlhQ-SJFjZOMvf1IpMcDWYYSxvuwRK9bx-YwVhrG2jfhuTRGekcC0zjECOnSdJPDyBqNkWlNXc5tdAYq2BGcVqtqqJVVfWqHsDFTOy1Iu_4TUDO77gqyqiJrVqcqPAX2eNGPVRtB3LFIwcQpfMTksM_DH0Gq91hv6d6t4O7I1jjBPkpo0Yew1IxfTMnsJK-F0_59LTU_U9eQgFz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDLZ4CcFheQtYHjlwLbRpO02OCBgtAkYcQHCL4iZBK80OaFoQP5-4TUcghDiwxx6cpoljf3adzwAHXPSMRt6LdGxNlHGbRBoTSTSuVugCS4Nx02yiGAzE_b28DtWEVSirpBjatUQRja2mw_1kXFcRd9SQqIiEortEHibehXIhpmHWQ-ecFPumfzf5kcBF08CVRCKS6S7xfDXMB_f0gbz0k7FuPFB_6T_MfRl-BfjJjlt9WYEpO1qFpQBFWTjo1SosXk3oXKs1wGNGFOHDoR2y6hkfxk2dWM3a9tOsS6Sz-pG9-Ng75BeZn117Z9NH4_7BG0LKXrDR48i-eiNEhfPsnyaCiIdqHW77Zzcnf6LQnCEqfVRbR1rnpSlTtMLFiAn2tOVZ6nJD9KqcO4J-TrgUeaGFywvjv14YydGiwVy6dANm6H2bwCzmWrtExy4lPGelhxVY5ilmXo9kXG5B1u2JKgNzOTXQGKpkQnDarqqiVVVhVbfgcCL21FJ3fCcg32-4qpuciWsbnKj0G9mdTjtUsAKV4pkPD6VHCcX2D4beh_nr0766PB9c_IYFTvE-ldPIHZipx892F-bKl_pvNd5rNP8NUxwAJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+subgradient+method+extended+to+variational+inequalities+involving+nonexpansive+mappings&rft.jtitle=Applicable+analysis&rft.au=Anh%2C+Pham+Ngoc&rft.au=Hien%2C+Nguyen+Duc&rft.au=Phuong%2C+Ngo+Xuan&rft.date=2020-12-09&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=99&rft.issue=16&rft.spage=2776&rft.epage=2792&rft_id=info:doi/10.1080%2F00036811.2019.1584288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00036811_2019_1584288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon