A parallel subgradient method extended to variational inequalities involving nonexpansive mappings
In this paper, we propose and analyze the convergence of new iteration methods for finding a common point of the solution set of a class of pseudomonotone variational inequalities and the fixed point set of a finite system of nonexpansive mappings in a real Hilbert space. The idea of this algorithm...
Gespeichert in:
| Veröffentlicht in: | Applicable analysis Jg. 99; H. 16; S. 2776 - 2792 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
09.12.2020
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0003-6811, 1563-504X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we propose and analyze the convergence of new iteration methods for finding a common point of the solution set of a class of pseudomonotone variational inequalities and the fixed point set of a finite system of nonexpansive mappings in a real Hilbert space. The idea of this algorithm is to combine the subgradient method with the parallel splitting-up techniques. The main iteration step in the proposed methods uses only one projection and does not require any Lipschitz continuous condition for the cost mapping. The convergent results are also extended to a pseudomonotone equilibrium problem involving a finite system of nonexpansive mappings. Finally, some numerical examples are developed to illustrate the behavior of the new algorithms with respect to existing algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0003-6811 1563-504X |
| DOI: | 10.1080/00036811.2019.1584288 |