Convergence Rate Analysis of Inertial Krasnoselskii-Mann Type Iteration with Applications

It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic convergence rate result for a Krasnoselskii-Mann it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization Jg. 39; H. 10; S. 1077 - 1091
1. Verfasser: Shehu, Yekini
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Abingdon Taylor & Francis 27.07.2018
Taylor & Francis Ltd
Schlagworte:
ISSN:0163-0563, 1532-2467
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic convergence rate result for a Krasnoselskii-Mann iteration with inertial extrapolation step in real Hilbert spaces. We give some applications of our results to the Douglas-Rachford splitting method and the alternating projection method by John von Neumann. Our result serves as supplement to many existing results on convergence rate of Krasnoselskii-Mann iteration in the literature.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0163-0563
1532-2467
DOI:10.1080/01630563.2018.1477799