Convergence Rate Analysis of Inertial Krasnoselskii-Mann Type Iteration with Applications
It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic convergence rate result for a Krasnoselskii-Mann it...
Saved in:
| Published in: | Numerical functional analysis and optimization Vol. 39; no. 10; pp. 1077 - 1091 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
27.07.2018
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0163-0563, 1532-2467 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic
convergence rate result for a Krasnoselskii-Mann iteration with inertial extrapolation step in real Hilbert spaces. We give some applications of our results to the Douglas-Rachford splitting method and the alternating projection method by John von Neumann. Our result serves as supplement to many existing results on convergence rate of Krasnoselskii-Mann iteration in the literature. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0163-0563 1532-2467 |
| DOI: | 10.1080/01630563.2018.1477799 |