Convergence Rate Analysis of Inertial Krasnoselskii-Mann Type Iteration with Applications

It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic convergence rate result for a Krasnoselskii-Mann it...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 39; číslo 10; s. 1077 - 1091
Hlavní autor: Shehu, Yekini
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 27.07.2018
Taylor & Francis Ltd
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic convergence rate result for a Krasnoselskii-Mann iteration with inertial extrapolation step in real Hilbert spaces. We give some applications of our results to the Douglas-Rachford splitting method and the alternating projection method by John von Neumann. Our result serves as supplement to many existing results on convergence rate of Krasnoselskii-Mann iteration in the literature.
AbstractList It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic convergence rate result for a Krasnoselskii-Mann iteration with inertial extrapolation step in real Hilbert spaces. We give some applications of our results to the Douglas-Rachford splitting method and the alternating projection method by John von Neumann. Our result serves as supplement to many existing results on convergence rate of Krasnoselskii-Mann iteration in the literature.
It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a nonasymptotic [Formula omitted.] convergence rate result for a Krasnoselskii-Mann iteration with inertial extrapolation step in real Hilbert spaces. We give some applications of our results to the Douglas-Rachford splitting method and the alternating projection method by John von Neumann. Our result serves as supplement to many existing results on convergence rate of Krasnoselskii-Mann iteration in the literature.
Author Shehu, Yekini
Author_xml – sequence: 1
  givenname: Yekini
  orcidid: 0000-0001-9224-7139
  surname: Shehu
  fullname: Shehu, Yekini
  email: yekini.shehu@unn.edu.ng
  organization: Department of Mathematics, University of Nigeria
BookMark eNqFkE1LAzEQhoNUsFV_ghDwvDXZbDZZvFiKH0VFED14CtNsVlO3yZqkSv-9_fLiQU8Dw_u8zDwD1HPeGYROKBlSIskZoSUjvGTDnFA5pIUQoqr2UJ9ylmd5UYoe6q8z2Tp0gAYxzgghLK9kH72Mvfs04dU4bfAjJINHDtpltBH7Bk-cCclCi28DROejaeO7tdk9OIeflp3Bk2QCJOsd_rLpDY-6rrV6s4hHaL-BNprj3TxEz1eXT-Ob7O7hejIe3WWaMZkyELQwqxuJEHVZMSMLKaqaSzqVtJpCqae1rqXmeqo541xw0AC1MHkJ0uhcs0N0uu3tgv9YmJjUzC_C6omockpoJWlBylXqfJvSwccYTKO0TZtDUwDbKkrU2qX6canWLtXO5Yrmv-gu2DmE5b_cxZazrvFhDl8-tLVKsGx9aAI4baNif1d8A-YAje8
CitedBy_id crossref_primary_10_1007_s10957_024_02600_5
crossref_primary_10_1007_s11228_024_00713_7
crossref_primary_10_1080_10556788_2021_1924715
crossref_primary_10_1007_s11081_020_09544_5
crossref_primary_10_1080_02331934_2023_2264884
crossref_primary_10_1016_j_automatica_2020_109286
crossref_primary_10_1007_s00500_021_06416_7
crossref_primary_10_1007_s12215_023_00976_3
crossref_primary_10_1109_TAC_2020_3004773
crossref_primary_10_3390_math8040638
crossref_primary_10_1007_s10957_019_01616_6
crossref_primary_10_1080_01630563_2021_1950762
crossref_primary_10_1007_s00025_021_01381_x
crossref_primary_10_1007_s11075_024_01852_6
crossref_primary_10_1007_s10915_025_02864_7
Cites_doi 10.1090/S0002-9939-1964-0165498-3
10.1007/978-3-319-41589-5_4
10.1137/130910294
10.1023/A:1011253113155
10.1080/02331930412331327157
10.1137/15M1046095
10.1088/0266-5611/24/1/015015
10.1007/s10589-017-9902-0
10.1017/S000497271600109X
10.1007/978-1-4419-9467-7
10.1137/100788100
10.1017/S0017089500001063
10.1090/conm/021/729507
10.1016/0022-247X(79)90024-6
10.1090/S0002-9904-1967-11823-8
10.1137/0716071
10.1016/0041-5553(64)90137-5
10.1016/j.jmaa.2013.04.072
10.1073/pnas.54.4.1041
10.1137/15100463X
10.1007/s10107-014-0805-x
10.1090/S0002-9947-1956-0084194-4
10.1016/0022-1236(69)90041-X
10.1016/S1385-7258(65)50005-6
10.1007/BF00251595
10.1090/S0002-9904-1967-11761-0
10.1007/s10107-015-0964-4
10.1007/s10851-014-0523-2
10.1007/s10851-015-0565-0
10.1016/j.amc.2015.01.017
10.1016/j.jmaa.2008.03.028
10.1007/s11856-013-0045-4
10.1016/0022-247X(67)90085-6
10.1016/j.cam.2007.07.021
10.1006/jdeq.2001.4034
10.1090/S0002-9904-1966-11544-6
10.1137/15M1045223
10.1007/978-1-84882-190-3
10.1137/080716542
10.1112/jlms/s2-17.3.547
10.1137/130940402
10.1007/BF02757276
10.2307/2315474
10.1007/s11075-015-0007-5
10.2140/pjm.1969.30.747
10.1142/S0219199700000025
10.1007/s10957-014-0685-5
10.1016/j.camwa.2008.03.035
ContentType Journal Article
Copyright 2018 Taylor & Francis 2018
2018 Taylor & Francis
Copyright_xml – notice: 2018 Taylor & Francis 2018
– notice: 2018 Taylor & Francis
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/01630563.2018.1477799
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 1091
ExternalDocumentID 10_1080_01630563_2018_1477799
1477799
Genre Article
GrantInformation_xml – fundername: Alexander von Humboldt-Foundation
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-a714e467077d693e84879d581b819ba6cbdcd8c5cbc535575acaad7e26a8ec2c3
IEDL.DBID TFW
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444259400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0163-0563
IngestDate Sun Nov 09 06:03:56 EST 2025
Tue Nov 18 22:27:40 EST 2025
Sat Nov 29 06:22:18 EST 2025
Mon Oct 20 23:50:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-a714e467077d693e84879d581b819ba6cbdcd8c5cbc535575acaad7e26a8ec2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9224-7139
PQID 2101981406
PQPubID 2045235
PageCount 15
ParticipantIDs informaworld_taylorfrancis_310_1080_01630563_2018_1477799
proquest_journals_2101981406
crossref_citationtrail_10_1080_01630563_2018_1477799
crossref_primary_10_1080_01630563_2018_1477799
PublicationCentury 2000
PublicationDate 2018-07-27
PublicationDateYYYYMMDD 2018-07-27
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-27
  day: 27
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Numerical functional analysis and optimization
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Mann W. R. (CIT0007) 1953; 4
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0044
Cegielski A. (CIT0004) 2012
CIT0047
CIT0046
CIT0049
CIT0048
CIT0009
CIT0008
CIT0050
Chang S. S. (CIT0005) 2002
CIT0052
CIT0051
CIT0010
Bot R. I. (CIT0045) 2016; 1
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
Bauschke H. H. (CIT0002) 2011
Goebel K. (CIT0026) 1984
Krasnoselskii M. A. (CIT0006) 1955; 10
CIT0014
CIT0013
CIT0057
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
Berinde V. (CIT0003) 2007
CIT0021
CIT0020
CIT0022
CIT0025
CIT0024
CIT0027
CIT0029
CIT0028
Chidume C. E. (CIT0023) 2009
References_xml – ident: CIT0016
  doi: 10.1090/S0002-9939-1964-0165498-3
– ident: CIT0032
  doi: 10.1007/978-3-319-41589-5_4
– ident: CIT0041
  doi: 10.1137/130910294
– volume-title: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications 49
  year: 2011
  ident: CIT0002
– ident: CIT0036
  doi: 10.1023/A:1011253113155
– ident: CIT0056
  doi: 10.1080/02331930412331327157
– ident: CIT0048
  doi: 10.1137/15M1046095
– ident: CIT0030
  doi: 10.1088/0266-5611/24/1/015015
– ident: CIT0027
  doi: 10.1007/s10589-017-9902-0
– ident: CIT0033
  doi: 10.1017/S000497271600109X
– ident: CIT0001
  doi: 10.1007/978-1-4419-9467-7
– ident: CIT0053
  doi: 10.1137/100788100
– ident: CIT0021
  doi: 10.1017/S0017089500001063
– ident: CIT0020
  doi: 10.1090/conm/021/729507
– volume: 1
  start-page: 29
  issue: 2016
  year: 2016
  ident: CIT0045
  publication-title: Minimax Theory Appl
– ident: CIT0008
  doi: 10.1016/0022-247X(79)90024-6
– ident: CIT0009
  doi: 10.1090/S0002-9904-1967-11823-8
– ident: CIT0055
  doi: 10.1137/0716071
– ident: CIT0040
  doi: 10.1016/0041-5553(64)90137-5
– ident: CIT0057
  doi: 10.1016/j.jmaa.2013.04.072
– volume-title: Iterative Approximation of Fixed Points, Lecture Notes in Mathematics 1912
  year: 2007
  ident: CIT0003
– ident: CIT0011
  doi: 10.1073/pnas.54.4.1041
– ident: CIT0046
  doi: 10.1137/15100463X
– ident: CIT0012
– ident: CIT0052
  doi: 10.1007/s10107-014-0805-x
– ident: CIT0054
  doi: 10.1090/S0002-9947-1956-0084194-4
– ident: CIT0015
  doi: 10.1016/0022-1236(69)90041-X
– ident: CIT0017
  doi: 10.1016/S1385-7258(65)50005-6
– ident: CIT0010
  doi: 10.1007/BF00251595
– ident: CIT0029
  doi: 10.1090/S0002-9904-1967-11761-0
– volume-title: Iterative Methods for Nonlinear Operator Equations in Banach Spaces
  year: 2002
  ident: CIT0005
– volume: 4
  start-page: 506
  issue: 3
  year: 1953
  ident: CIT0007
  publication-title: Bull. Amer. Math. Soc
– ident: CIT0028
  doi: 10.1007/s10107-015-0964-4
– ident: CIT0042
  doi: 10.1007/s10851-014-0523-2
– ident: CIT0043
  doi: 10.1007/s10851-015-0565-0
– ident: CIT0044
  doi: 10.1016/j.amc.2015.01.017
– volume: 10
  start-page: 123
  year: 1955
  ident: CIT0006
  publication-title: Uspekhi Mat. Nauk
– ident: CIT0038
  doi: 10.1016/j.jmaa.2008.03.028
– ident: CIT0031
  doi: 10.1007/s11856-013-0045-4
– ident: CIT0013
  doi: 10.1016/0022-247X(67)90085-6
– ident: CIT0039
  doi: 10.1016/j.cam.2007.07.021
– ident: CIT0035
  doi: 10.1006/jdeq.2001.4034
– ident: CIT0014
  doi: 10.1090/S0002-9904-1966-11544-6
– ident: CIT0049
  doi: 10.1137/15M1045223
– volume-title: Geometric Properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Mathematics 1965
  year: 2009
  ident: CIT0023
  doi: 10.1007/978-1-84882-190-3
– ident: CIT0037
  doi: 10.1137/080716542
– volume-title: Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics 2057
  year: 2012
  ident: CIT0004
– ident: CIT0019
  doi: 10.1112/jlms/s2-17.3.547
– ident: CIT0050
  doi: 10.1137/130940402
– ident: CIT0025
  doi: 10.1007/BF02757276
– ident: CIT0018
  doi: 10.2307/2315474
– ident: CIT0047
  doi: 10.1007/s11075-015-0007-5
– ident: CIT0022
  doi: 10.2140/pjm.1969.30.747
– volume-title: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
  year: 1984
  ident: CIT0026
– ident: CIT0034
  doi: 10.1142/S0219199700000025
– ident: CIT0051
  doi: 10.1007/s10957-014-0685-5
– ident: CIT0024
  doi: 10.1016/j.camwa.2008.03.035
SSID ssj0003298
Score 2.2792325
Snippet It is well known that the Krasnoselskii-Mann iteration of nonexpansive operators find applications in many areas of mathematics and known to be weakly...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1077
SubjectTerms Convergence
Convergence rate
Hilbert space
Hilbert spaces
inertial terms
Iterative methods
nonexpansive mapping
Operators (mathematics)
Title Convergence Rate Analysis of Inertial Krasnoselskii-Mann Type Iteration with Applications
URI https://www.tandfonline.com/doi/abs/10.1080/01630563.2018.1477799
https://www.proquest.com/docview/2101981406
Volume 39
WOSCitedRecordID wos000444259400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: TFW
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yfNAHv8XplDz4Gl3Tj7SPYzgc4hCZOJ9CmqYwlG6s1b_fuzQdGyJ70McW7iiX3N3v0svvCLk22uD4hozlystYEMUpS0SKN5ZNBG8Uj3hmh02I0SieTJIn101YurZKrKHzmijCxmp0bpWWTUfcLaAUBL4-NmbF4OpCiASv8EHqR9ccD16XsdjndhouSjAUae7w_KZlLTutcZf-iNU2AQ32_-HTD8ieQ5-0V2-XQ7JliiOy-7ikbi2PyVsf-9DtlUxDnwGJ0oa3hM5yOiywDxtUPCxUWcxKyKzv0ynDUcsUS1o6tCzNsNgUT3hpb-X_-Al5GdyN-_fMzV9gGgrXiinhBQYCaVeILEp8E0Nxk2QhAF2AEamKdJohs0CoUx0CbBGh0kplwvBIxUZz7Z-SVjErzBk2UGkBMnEOmgJltOJBnHOApp7KBe_qNgkau0vtyMlxRsaH9BoOU2c5iZaTznJtcrMUm9fsHJsEktVFlZU9FsnrGSbS3yDbaXaAdI5eSqiYvQRZw6LzP6i-IDv4iGfGXHRIq1p8mkuyrb-qabm4slv6G-608gA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAEH3ojBgBy4Btb0kfY4TUyb9jigIcYpStNUmkAdWge_Hzttp00IcYBrK1uVk9ifXeczIbdGGxzfkLBUOQnzgjBmkYjxxrIJ4IniAU_ssAkxGoWTSbR6FwbbKjGHTguiCOur8XBjMbpqibsHmILI18XOrBDOuhAiijbJlg-xFvnzx53npTd2uZ2HiyIMZapbPD-pWYtPa-yl37y1DUGdg__4-EOyXwJQ2ip2zBHZMNkx2Rsu2VvzE_LSxlZ0eyvT0EcAo7SiLqGzlPYybMUGFf25yrNZDsH1dTplOG2ZYlZLe5aoGdabYpGXtlZ-kZ-Sp87DuN1l5QgGpiF3XTAlHM-AL20KkQSRa0LIb6LEB6wLSCJWgY4TJBfwdax9QC7CV1qpRBgeqNBort0zUstmmTnHHiotQCZMQZOnjFbcC1MO6NRRqeBNXSdeZXipS35yHJPxJp2KxrS0nETLydJydXK3FHsvCDp-E4hWV1UubGUkLcaYSPcX2Ua1BWR51nMJSbMTIXFYcPEH1TdkpzseDuSgN-pfkl18hSVkLhqktph_mCuyrT8X03x-bff3F0xd9io
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gIAQH3ojBgBy4Ftb0kfY4DSamwTShIcYpStNEmkDdtBZ-P3Yf0yaEdoBrK1uV4zifU_szIddaaRzfEFtG2rHl-kFkhTzCjmXtwxPJfBbnwyZ4vx-MRuGgrCZMy7JKzKFNQRSRx2rc3NPYVBVxt4BSEPg6WJgVwFbnnIfhOtkA6Oyjkw87r_Ng7LB8HC6KWChTNfH8pmbpeFoiL_0RrPMTqLP3D9--T3ZL-Elbhb8ckDWdHJKdpzl3a3pE3tpYiJ73ZGr6DFCUVsQldGJoN8FCbFDRm8k0maRwtL6PxxbOWqaY09JuTtMMq03xipe2Fn6QH5OXzv2w_WCVAxgsBZlrZkluuxoiaZPz2A8dHUB2E8YeIF3AEZH0VRQjtYCnIuUBbuGeVFLGXDNfBlox5ZyQWjJJ9ClWUCkOMoEBTa7USjI3MAywqS0NZ01VJ25ld6FKdnIckvEh7IrEtLScQMuJ0nJ1cjMXmxb0HKsEwsVFFVl-L2KKISbCWSHbqDxAlDs9FZAy2yHShvlnf1B9RbYGdx3x2O33zsk2vsH7Y8YbpJbNPvUF2VRf2TidXebe_Q1nG_Tc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+Rate+Analysis+of+Inertial+Krasnoselskii-Mann+Type+Iteration+with+Applications&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Shehu%2C+Yekini&rft.date=2018-07-27&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=39&rft.issue=10&rft.spage=1077&rft_id=info:doi/10.1080%2F01630563.2018.1477799&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon