Necessary optimality conditions for minimax programming problems with mathematical constraints

In this paper, necessary optimality conditions in terms of upper and/or lower subdifferentials of both cost and constraint functions are derived for minimax optimization problems with inequality, equality and geometric constraints in the setting of non-differentiatiable and non-Lipschitz functions i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 66; číslo 11; s. 1755 - 1776
Hlavní autori: Bao, Truong Q., Gupta, Pankaj, Khanh, Phan Q.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 02.11.2017
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, necessary optimality conditions in terms of upper and/or lower subdifferentials of both cost and constraint functions are derived for minimax optimization problems with inequality, equality and geometric constraints in the setting of non-differentiatiable and non-Lipschitz functions in Asplund spaces. Necessary optimality conditions in the fuzzy form are also presented. An application of the fuzzy necessary optimality condition is shown by considering minimax fractional programming problem.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2017.1344238