Necessary optimality conditions for minimax programming problems with mathematical constraints

In this paper, necessary optimality conditions in terms of upper and/or lower subdifferentials of both cost and constraint functions are derived for minimax optimization problems with inequality, equality and geometric constraints in the setting of non-differentiatiable and non-Lipschitz functions i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 66; číslo 11; s. 1755 - 1776
Hlavní autoři: Bao, Truong Q., Gupta, Pankaj, Khanh, Phan Q.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 02.11.2017
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, necessary optimality conditions in terms of upper and/or lower subdifferentials of both cost and constraint functions are derived for minimax optimization problems with inequality, equality and geometric constraints in the setting of non-differentiatiable and non-Lipschitz functions in Asplund spaces. Necessary optimality conditions in the fuzzy form are also presented. An application of the fuzzy necessary optimality condition is shown by considering minimax fractional programming problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2017.1344238