Adjoint-based SQP method with block-wise quasi-Newton Jacobian updates for nonlinear optimal control
Nonlinear model predictive control (NMPC) generally requires the solution of a non-convex dynamic optimization problem at each sampling instant under strict timing constraints, based on a set of differential equations that can often be stiff and/or that may include implicit algebraic equations. This...
Saved in:
| Published in: | Optimization methods & software Vol. 36; no. 5; pp. 1030 - 1058 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
03.09.2021
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1055-6788, 1029-4937 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Nonlinear model predictive control (NMPC) generally requires the solution of a non-convex dynamic optimization problem at each sampling instant under strict timing constraints, based on a set of differential equations that can often be stiff and/or that may include implicit algebraic equations. This paper provides a local convergence analysis for the recently proposed adjoint-based sequential quadratic programming (SQP) algorithm that is based on a block-structured variant of the two-sided rank-one (TR1) quasi-Newton update formula to efficiently compute Jacobian matrix approximations in a sparsity preserving fashion. A particularly efficient algorithm implementation is proposed in case an implicit integration scheme is used for discretization of the optimal control problem, in which matrix factorization and matrix-matrix operations can be avoided entirely. The convergence analysis results as well as the computational performance of the proposed optimization algorithm are illustrated for two simulation case studies of NMPC. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1055-6788 1029-4937 |
| DOI: | 10.1080/10556788.2019.1653869 |