On generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables

We define and discuss different enumerative methods to compute solutions of generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables. We propose both branch-and-bound methods based on merit functions for the mixed-integer game, and branch-and-prune methods t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization Ročník 68; číslo 1; s. 197 - 226
Hlavný autor: Sagratella, Simone
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Taylor & Francis 02.01.2019
Taylor & Francis LLC
Predmet:
ISSN:0233-1934, 1029-4945
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We define and discuss different enumerative methods to compute solutions of generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables. We propose both branch-and-bound methods based on merit functions for the mixed-integer game, and branch-and-prune methods that exploit the concept of dominance to make effective cuts. We show that under mild assumptions the equilibrium set of the game is finite and we define an enumerative method to compute the whole of it. We show that our branch-and-prune method can be suitably modified in order to make a general equilibrium selection over the solution set of the mixed-integer game. We define an application in economics that can be modelled as a Nash game with linear coupling constraints and mixed-integer variables, and we adapt the branch-and-prune method to efficiently solve it.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2018.1545125