On generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables
We define and discuss different enumerative methods to compute solutions of generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables. We propose both branch-and-bound methods based on merit functions for the mixed-integer game, and branch-and-prune methods t...
Uložené v:
| Vydané v: | Optimization Ročník 68; číslo 1; s. 197 - 226 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis
02.01.2019
Taylor & Francis LLC |
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We define and discuss different enumerative methods to compute solutions of generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables. We propose both branch-and-bound methods based on merit functions for the mixed-integer game, and branch-and-prune methods that exploit the concept of dominance to make effective cuts. We show that under mild assumptions the equilibrium set of the game is finite and we define an enumerative method to compute the whole of it. We show that our branch-and-prune method can be suitably modified in order to make a general equilibrium selection over the solution set of the mixed-integer game. We define an application in economics that can be modelled as a Nash game with linear coupling constraints and mixed-integer variables, and we adapt the branch-and-prune method to efficiently solve it. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2018.1545125 |